
TEMU
CAN Bus Modelling

Mattias Holm

Version 1.0, 2016-04-01

Doc. no: TERMA/SPD/63/TEMU/DEV/CANBUS
Rev: 1.0
Date: 2016-04-01
Approved By:

PUBLIC

© Terma GmbH, Germany, 2016. Proprietary and intellectual rights of Terma GmbH, Germany are involved in the subject-matter of
this material and all manufacturing, reproduction, use, disclosure and sales rights pertaining to such subject-matter are expressly
reserved. This material is submitted for a specific purpose as agreed in writing, and the recipient by accepting this material agrees
that this material will not be used, copied or reproduced in whole or in part, nor its content (or any part thereof) revealed in any
manner or to any third party, except own staff, to meet the purpose for which it was submitted and subject to the terms of the
written agreement.

Table of Contents
1. Introduction. 1

2. Interfaces . 1

3. Commands . 2

4. Classes . 3

4.1. SimpleCANBus . 3

4.1.1. Properties . 3

4.1.2. Interfaces . 3

4.1.3. Ports . 3

5. Examples . 3

Table 1. Record of Changes

Rev Date Author Note

1.0 2016-04-01 MH Initial version.

1. Introduction
TEMU provides support for CAN bus based devices. The bus model interfaces are available in:
"temu-c/Bus/Can.h". In addition to the interfaces one CAN bus model is provided.

As CAN is a multi-node bus, a bus model object is needed to route messages to the relevant
destination.

There are two types of CAN classes that can be created, firstly bus models and secondly device
models. The difference is that a bus model is responsible for routing messages. To the device
models, and the device models implement CAN message reception logic.

The standard SimpleCANBus bus model, provides fairly dumb logic. It routes a sent message to all
devices connected to the CAN bus (except the sender device). However, CAN devices often
implements filtering of message IDs in hardware, and this filtering (which is typically based on a
mask and code pair) can be used to define a smart CAN bus model which can route frames using
internal routing tables.

However, a smart CAN bus model is not necessarily faster for a small CAN network. Currently,
TEMU is not delivered with a smart bus model, in fact the optimal routing algorithm depends on
the allocation of message IDs and whether or not extended message IDs are used and how many
filters are supported per device. While a smart bus model may be provided in the future, none is
provided at present.

2. Interfaces
The interesting interfaces are defined in the temu-c/Bus/Can.h header. This header also define
inline functions to help construct CAN frames.

TEMU: CAN Bus Modelling
Doc. no: TERMA/SPD/63/TEMU/DEV/CANBUS
Rev. no: 1.0

PUBLIC Page 1 of 5

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the
front page.

PUBLIC

1

typedef struct {
 uint8_t Data[8];
 uint32_t Flags;
 uint8_t Length;
 uint8_t Error;
} temu_CanFrame;

struct temu_CanDevIface {
 void (*connected)(void *Dev, temu_CanBusIfaceRef Bus);
 void (*disconnected)(void *Dev);
 void (*receive)(void *Dev, temu_CanFrame *Frame);
};

struct temu_CanBusIface {
 void (*connect)(void *Bus, temu_CanDevIfaceRef Dev);
 void (*send)(void *Bus, void *Sender, temu_CanFrame *Frame);
 void (*enableSendEvents)(void *Bus);
 void (*disableSendEvents)(void *Bus);
 void (*reportStats)(void *Bus);
 void (*setFilter)(void *Bus, temu_CanDevIfaceRef Dev, int FilterID,
 uint32_t Mask, uint32_t Code);
};

The CAN frame is central to the transmission of CAN data. It is not a bit by bit representation of the
CAN protocol, rather it is a simplified format that omit bits that are implicit and ensures that
relevant bits such as RTR is fixed in location.

If a real CAN frame is needed, you need to transform the frame struct to the needed representation.
Note that the struct is optimised for performance (e.g. Data is first and can be bitcopied as a uint64).

Device models are typically simple, they implement the connected, disconnected and receive
functions. Of-course, if the device also need registers and MMIO handling, it tend to get more
complex.

As can be seen, the device and bus interface support connect and disconnect events. The purpose of
these are to support hot-plugging of CAN devices. As these connect and disconnect events are
supported, the normal connect command should not be used when connecting a CAN device, rather
the "can-connect" command is to be used.

3. Commands
Two CAN bus related commands are provided:

Name Description

can-connect Connect a CAN device to a CAN bus.

TEMU: CAN Bus Modelling
Doc. no: TERMA/SPD/63/TEMU/DEV/CANBUS
Rev. no: 1.0

PUBLIC Page 2 of 5

2

Name Description

can-disconnect Disconnect CAN device from a CAN bus.

4. Classes

4.1. SimpleCANBus
The SimpleCAN bus class provides a CAN bus model. In the SimpleCANBus class, messages are
forwarded to all connected devices (except the sending one). If this results in performance issues, it
is possible to write a filtering CAN bus model.

4.1.1. Properties

Name Type Description

devices irefarray CAN devices attached to bus

object.timeSource object Time source object (a cpu or
machine object)

stats.lastReportSentBits uint64_t Statistics

stats.sentBits uint64_t Statistics

4.1.2. Interfaces

Name Type Description

CanBusIface CanBusIface CAN Bus Interface

4.1.3. Ports

Prop Iface Description

- - -

5. Examples
This example shows how to create a simple CAN device and connect it to a bus model.

TEMU: CAN Bus Modelling
Doc. no: TERMA/SPD/63/TEMU/DEV/CANBUS
Rev. no: 1.0

PUBLIC Page 3 of 5

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the
front page.

PUBLIC

3

exec ut700.temu
import MyCanDevice
Create a can bus
create class=SimpleCANBus name=canbus0
create class=MyCANClass name=mycan0

can-connect bus=canbus0:CanBusIface dev=occan0:CanDevIface # From ut700
can-connect bus=canbus0:CanBusIface dev=mycan0:CanDevIface

The next example shows how to implement a simple CAN device

#include "temu-c/Bus/Can.h"
#include "temu-c/Bus/Objsys.h"

// This is a device / RTU model, it needs to know about its CAN bus
typedef struct MyCanDevice {
 temu_Object Super;
 temu_CanBusIfaceRef Bus;
} MyCanDevice;

void*
create(const char *Name, int Argc, const temu_CreateArg *Argv)
{
 MyCanDevice *Dev = malloc(sizeof(MyCanDevice));
 memset(Dev, 0, sizeof(MyCanDevice);
 return Dev;
}

void
dispose(void *Obj)
{
 MyCanDevice *Dev = (MyCanDevice*)Obj;
 free(Dev);
}

// Implement the CAN Device interface

void
connected(void *Obj, temu_CanBusIfaceRef Bus)
{
 MyCanDevice *Dev = (MyCanDevice*)Obj;
 Dev->Bus = Bus;
 temu_logInfo(Dev, "connected to CAN bus");
}

void

TEMU: CAN Bus Modelling
Doc. no: TERMA/SPD/63/TEMU/DEV/CANBUS
Rev. no: 1.0

PUBLIC Page 4 of 5

4

disconnected(void *Obj)
{
 MyCanDevice *Dev = (MyCanDevice*)Obj;
 Dev->Bus = {NULL, NULL};
 // NOTE: This should also stop any pending events related to
 // message transmissions
 temu_logInfo(Dev, "disconnected from CAN bus");
}

void
receive(void *Dev, temu_CanFrame *Frame)
{
 temu_logInfo(Dev, "received CAN message with msg id %u",
 temu_canGetIdent(Frame));
}

temu_CanDevIface CanIface = {
 connected,
 disconnected,
 receive,
};

TEMU_PLUGIN_INIT
{
 temu_Class *cls = temu_registerClass("MyCANClass", create, dispose);

 temu_addProperty(cls, "CANBus", teTY_IfaceRef, 1);
 temu_addInterface(cls, "CanDevIface", "CanDevIface", &CanIface);

}

TEMU: CAN Bus Modelling
Doc. no: TERMA/SPD/63/TEMU/DEV/CANBUS
Rev. no: 1.0

PUBLIC Page 5 of 5

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the
front page.

PUBLIC

5

	TEMU: CAN Bus Modelling
	Table of Contents
	1. Introduction
	2. Interfaces
	3. Commands
	4. Classes
	4.1. SimpleCANBus
	4.1.1. Properties
	4.1.2. Interfaces
	4.1.3. Ports

	5. Examples

