
High Performance Microprocessor Emulation for

Software Validation Facilities and Operational

Simulators

Dr. Mattias HolmTerma, Leiden, South-Holland, 2316 XG, Netherlands

Micro-processor emulators are essential tools for development, testing and deployment
of on-board software. Emulators are in principle simple systems, but achieving high per-
formance is often contrary to other software development goals such as maintainability and
portability. In addition, the advent of space qualified, multi-core high performance proces-
sors have significant impact on the design and implementation of emulators for use in SVFs
and operational simulators. This paper introduces the new T-EMU 2, a high performance,
multi-core processor emulator, currently supporting the emulation of the SPARCv7 and
v8 architectures (including the ERC32 and LEONx). T-EMU 2 is 50% faster than the
nearest competing system and is bundled with a sophisticated API whose purpose is to
simplify device modelling and ensure the absence of the so called I/O bottleneck. T-EMU
has been designed using the LLVM compiler framework to be extendable with new target
architectures and new emulation methods such as binary translation.

Nomenclature

Host The computer platform on which the emulator is running
Target The emulated computer platform.
API Application Programming Interface (the contract between programmer and compiler).
ABI Application Binary Interface (the contract between compiler and processor).
SRT Simulated Real Time (simulated time, may progress faster or slower than WCT)
WCT Wall Clock Time (real-world time as on your wall clock)

I. Introduction

Software based micro-processor emulators, which are simulating a micro processor’s instruction set, are
important tools in the development and testing of on-board software, operational procedures, and for the
training of spacecraft operators.

Emulators are pieces of software that provides three primary functions, firstly they provide an instruction
set simulation of a micro-processor, secondly they provide a mechanism for memory simulation and thirdly
they provide means for simulating I/O operations. Each of these functions is usually tightly coupled, as
for example the instruction set simulator must have access to memory, and the I/O simulation system is
often exposed as memory mapped I/O operations (MMIO) (coupling the I/O simulation with the memory
simulation system).

The instruction set simulation part is typically either an interpreter or a binary translator. In order to
achieve high performance, instruction set simulators often have to optimised on a very low level. The main
goal for optimising an emulator, is actually to minimise the number of host instructions needed to simulate
one target instruction. In-fact, to achieve high performance, every design decision must be taken with this
in mind.

Interpreters can be implemented in various ways. The näıve implementation of an instruction set inter-
preter would see the implementation of one function per target instruction and then a large main emulation
function that decodes a fetched instruction word to a function pointer and then calls that function. However,
such an emulator is often very slow due to the overhead of a function call per instruction executed. Therefore,

1 of 11

American Institute of Aeronautics and Astronautics

interpreters are often threaded, which means that instead of having separate functions per emulated target
instruction, all instruction implementations will be embedded in one main function. Instruction dispatching
is then done using computed gotos instead of indirect function calls. This saves the overhead of preparing
the stack for the called function.

Binary translators can be either static or dynamic, most emulators use dynamic translators (and static
translation will not be discussed further in this paper). In a dynamic binary translator, target instruction
blocks are translated host code at run time. The main advantage of a binary translator is that common
operations (such as updating cycle and program counters) can be eliminated and done once per translated
instruction block, in addition to this, the instruction decoding can be eliminated as well saving a few extra
host cycles. Binary translators are however firstly quite complex to implement, and secondly relatively slow
while translating target code. In the common case where code is repeatedly executed, a binary translator is
usually a lot faster than an interpreter. It should be noted that it is possible to combine both interpretation
and binary translation in order to eliminate the translation step for code that is executed only once, such
hybrid execution is often done in high performance scripting language interpreters. For example, in the
WebKit JavaScript engine, a multi-tier approach is used1 where several interpretation and optimisation
strategies are mixed with binary translation. The different execution strategies are selected based on how
many times a code segment is executed. Similar approaches can be applied to an emulator as well.

It should be noted for those that are familiar with simulation software, that an instruction set simulator
is a discrete event simulator with special case handling to speed up execution of sequences of emulated
instructions (each executed instruction can be seen as a discrete event). Virtually all emulators provide
abilities to post events in a simulated processor’s timed event queue, interleaving instructions with other
timed events. These timed events will in many cases be used to simulate various delays such as simulating
on-chip timers, the time taken for transmitting messages on some bus or the time taken to execute a DMAa

transaction. In addition to the hardware events, it is possible to post other timed events such as integration
steps on the CPUs event queue.

During software development, emulators offers the ability for every developer to use a representative
system (with the correct endianess, device models, etc) without needing access to the hardware which often
is not yet available or simply too expensive to offer to every developer. For example, when NetBSD was
ported to the AMD64 architecture, the port was done using the Simics full-system simulator3 (a full-system
simulator is essentially an emulator with a full set of device models that in the end provides the simulation
of a whole computer system).

Additionally, emulators offers added advantages such as the ability of doing non-intrusive debugging.
Also, by being fully deterministic, it is always possible to replicate a bug which has already been observed
in the emulator. This means that the elusive heisenbugs that hides themselves when being observed in a
debugger, can easily be replicated and tracked down as observation does no longer change the state of the
software.

The use of emulators is not only limited to direct software debugging and development, but they can
also be used for more complex system, including the use modelling of networks of either multiple computers
or different types of modelled remote terminals. For example a virtual 1553 bus can be created inside an
emulator, connecting two different virtual computer systems together.11 Such setups can for example be
used for bus-traffic budget analysis and low level bus protocol debugging.11

A special case use of emulators which is commonly used in the space sector are the software validation
facilities (used for on-board software testing), and operational simulators (used for training of operators and
testing of operational procedures). These, although very similar in concept, have different requirements of
for example timing accuracy and performance. With an SVF, it is acceptable to sacrifice performance for
more accuracy, while in an operational simulator, the accuracy will be sacrificed in order to achieve higher
performance. In operational simulators, using the real flight software provides a significant advantage as it
replicates the majority of the software bugs that exist in the real spacecraft. Not simulating these bugs when
testing operational procedures could result in the loss of mission in worst case.

Modern ESA missions use the SPARCv7 or SPARCv8 processor architectures for their flight computers
processors, more specifically the single core ERC32 and LEON2 processors. Upcoming missions will however
be able to use the quad-core NGMP processor, a new high performance LEON4-based processor.

The more modern flight qualified processors are causing problems for the use of emulators in several
aspects. Firstly, interpreted emulators typically have a slowdown of 25-50 times compared to the host

aDirect Memory Access

2 of 11

American Institute of Aeronautics and Astronautics

processor (i.e. a 2.5 GHz CPU can emulate a 50-100 MHz target processor in real-time). Secondly, the
introduction of multi-core processors results in the need to support the emulation of these systems also in
the emulator.

The current operational simulators used in Europe are often struggling to achieve real-time performance,
and with the advent the new high performance quad-core NGMP processor it is likely not practical with
existing tools. As the main bottleneck is typically the emulator, the T-EMU 2 emulator framework project
was started as an internal Terma project.

This paper is organised as follows, in Section I.A, related work is described, Section II discuss the
architecture and algorithms used in T-EMU 2. Section III presents a more detailed overview of different
use cases. Section IV describes performance measurements have been done and compares the numbers with
other (single-core) emulators. Finally, Section VI draws conclusions and discuss future work on T-EMU 2.

I.A. Related Work

Several emulators have been written and implemented by others, there are a number of commercial and open
source offerings available.

General purpose high performance emulator systems such as Simics7,16 and OVPSim4 exists. Simics is
produced by Windriver Systems and provides very high performance emulation of multi-core targets. Simics
is also equipped with a very sophisticated API that can be used to implement device models. Similar tools are
also available in OVPSim. Another system is QEMU,8 an open source emulator. QEMU is well performing,
simulates multi-core processors but is licensed under the GPL which at least some users find unacceptable
for using for the development of a simulator (since the GPL would need to apply to the whole simulator).
The mentioned systems are typically used as full system simulators, meaning that they simulate a complete
computer system (including busses, remote terminals, sensors, and actuators).

In addition to the fully system simulators, a number of other SPARCv8 emulators exist including the
ESOC emulator and TSIM. Both of these are instruction set simulators, and provides only a rudimentary
set of device models (such as timers and UARTs). These emulators are typically used as part of a larger
simulator, where the emulator is seen as a component and not the central part of the system. Neither the
ESOC emulator nor TSIM supports the emulation of multi-core processors however.

II. Architecture

Writing a processor emulator is not conceptually difficult. However, achieving high performance is dif-
ficult, as high emulation performance typically requires low level optimisations that can only be done in
assembler, or in very low level C code. When implementing emulators on this level, the implementation
becomes target and host specific, meaning that if other targets have to be added, items such as instruction
decoders must be rewritten from scratch. In the case of instruction decoders, an emulator typically provides
an assembler and dis-assembler and these need specialised versions of the instruction decoder. Thus, the
same code has to be repeated at least three times.

The consequence of this is that it is very difficult, if not even impossible, to provide a really high
performing emulator in a high level out-of-the-box programming language while ensuring the maintainability
and portability of the system.

T-EMU solves this by using domain-specific languages and compiler intermediate representation code.
Processors are described in an abstract way which ensures that the bit patterns used for instruction decoding
are firstly humanly readable, and secondly, they can be analysed and transformed automatically by running
a generic decoder generator that can generate instruction decoding for any fixed width instruction set. To
save on development time, we did not implement a completely new language for implementing the emulated
instructions, rather T-EMU reuses open source tools from the LLVM compiler project.2

II.A. Instruction Decoding and Semantics

Instructions in T-EMU are defined using a combination of the LLVM TableGen and LLVM Assembler
languages.

TableGen is a data description language, which is processed with a program that assigns semantics to the
TableGen records (very much like XML is assigned meaning by a processing step). TableGen was developed
to provide a simple and maintainable way to encode the instruction bit patterns needed by instruction

3 of 11

American Institute of Aeronautics and Astronautics

decoders and encoders provided by the LLVM toolchain. TableGen provides record types that can be used
to embed code snippets associated with the instruction bit patterns. In our emulator, these snippets are
used to describe the emulated instruction semantics. Note that, while LLVM already have descriptions
for instructions of many different architectures and it provides semantics for different target instructions
in the form of the LLVM instruction selection DAGsb, these DAGs does not encode the full semantics of
the instructions (which for example also include raising traps when certain conditions are fulfilled); also in
our emulator we would potentially want to support more targets (but not more hosts) than are available in
LLVM so in the end T-EMU does not reuse the LLVM instruction definitions, but only the same tools.

In Listing 1 an example add instruction as provided in the TableGen file for the SPARCv8 target is
shown.

The defm statement instantiates the ri inst alu class inserting the semantics between the register and
immediate access procedures (see the # sem # concatenation operation). The multiclass ensures two instruc-
tions are emitted, the register-register and the register immediate variants. Note that the functions called
with the emu prefix are known as emulator intrinsics. They primarily serves as a way to hide the low level
details of the CPU structure from the CPU definition file. Intrinsics will typically be inlined at some stage
in the compilation pipeline, meaning that an actual function call in the code does not impact performance
in any way.

Listing 1. Example TableGen Instruction Description

mu l t i c l a s s r i i n s t a l u <b i t s<2> op , b i t s<6> op3 , s t r i n g asm , code sem>
{

c l a s s r r {
l e t i = 0 ;
l e t semant ics = [{

%r1 = c a l l i 32 @emu getReg (i 5 %rs1)
%r2 = c a l l i 32 @emu getReg (i 5 %rs2)

}] # sem # [{
c a l l void @emu setReg (i 5 %rd , i 32 %re s)

}] ;
}
c l a s s r i {

l e t i = 1 ; // Immediate var iant , note that i n s t {13} = i
l e t semant ics = [{

%r1 = c a l l i 32 @emu getReg (i 5 %rs1)
; ; Sign extend i n s t r u c t i o n immediate f i e l d
%r2 = sext i 13 %simm13 to i32

}] # sem # [{
c a l l void @emu setReg (i 5 %rd , i 32 %re s)

}] ;
}

}
defm add : r i i n s t a l u <0b10 , 0b1010101 , ”add” , [{

%re s = add i32 %r1 , %r2
}]> ;

II.B. Compilation Pipeline

While initial implementations of our emulator generation pipeline, used multiple separate tools and code
transformation passes the later versions (from T-EMU 2.2 and onward) consolidates most of the steps in a
single program which simplifies the setup of the build system considerably. In any case, our initial approach
which have been discussed in 13,14, is largely maintained in the latest versions except for the integration of
the different steps in one tool.

An emulator core is generated by loading the TableGen file in the emugen program, emugen then emits
an interpreter loop (currently it supports the indirect threaded interpretation algorithm with a single table

bDirected Acyclic Graph

4 of 11

American Institute of Aeronautics and Astronautics

decoder. Support for generating a predecoded direct threaded based emulator is under development (without
having to change the instruction definitions). The two interpreter algorithms are described further in 17.

The general pipeline for the emulator generator is illustrated in Figure 1. Emugen loads the TableGen file,
and emits an assembler and disassembler from the instruction descriptions. It then emits LLVM functions
for each instruction, links in the “intrinsics”-file and emits the emulator loop/interpreter function into the
same module.

Figure 1. Emulator Generator Pipeline in T-EMU 2.2

After the interpreter has been generated and in-
serted into the LLVM module, several LLVM code
analysis and transformation passes are executed on
the module. The passes include for example instruc-
tion inlining (which eliminates the instruction func-
tions and embeds them inside the main emulator
function), and domain specific optimisations. For
example, in the normal cases a trap or interrupt are
raised using the indirect control transfer function
longjmp, however for longjmp-calls inside the emu-
lator loop this is not needed, and direct jumps can
replace the call to longjmp to specific labels instead.

After the custom transformation pipeline has
been executed, the LLVM bitcode is finally emitted
by the emugen tool as a file. The bitcode is then
compiled to object code which in turn is linked into
a CPU emulation library.

II.C. C-API

T-EMU 2 was designed to not only provide the em-
ulation of multi-core processors, but to be able to be
used both as a plugin in an existing simulator where
the emulator is a component, and to be able to use T-EMU 2 as a full system simulator without a separate
simulation framework (the latter approach actually simplifies the design of the simulator as it centralises the
model scheduling and event system to the emulator, but as T-EMU does not exist in a vacuum the emulator
must provide ability to integrate as a component in existing systems).

Thus, T-EMU 2 provides a sophisticated C-API, centered around the T-EMU object system, which
provides the most common capabilities needed by a simulator framework. Including interfaces, property
publication and checkpointing (also known as breakpoints in some simulators).

Figure 2. API From a Layered Perspective

In Figure 2 the layering and separation of com-
ponents using the T-EMU API is illustrated. The
Command Line Interface (CLI) is built on-top of the
Object System API, the CLI does not have direct ac-
cess to user provided models or the CPU models, all
control is done using the Object System API. Typi-
cally one can divide the users of the Object System
API in two categories, drivers and models, where the
rivers are API clients that drive the simulation (i.e.
call the CPUs models’ run functions through their
CPU interfaces exposed via the object system), this

include the CLI, python scripts, third party simulators etc. Models on the other hand are simulation com-
ponents, simulating for example a CPU or some other device (e.g. a UART), these components are typically
passive and only activated due to a driver advancing the time.

The public API has been defined using the C language for a number of reasons, one of the main ones
being that the emulator CPU core must be able to talk to the memory system. This is not practical would
the API be implemented in C++ or some other language without a defined (and relatively simple) ABI.
In addition, it is trivial to wrap a C-API for use in different languages such as Python, and it can be used
directly from C++.

5 of 11

American Institute of Aeronautics and Astronautics

In Listing 2 a simple T-EMU plugin using the object system is shown. The TEMU PLUIGIN INIT function
will be called when the plugin is loaded, it calls the registerClass function to register classes it provides
with the temu runtime. T-EMU can then create new objects by class name. The advantage with this is that
the user can easily at runtime create new objects in the command line interface and connect these to the
rest of the system at any point of time. Using the plugin defined in the example, an instance can be created
using the command: object-create class="MyClass" name="obj0".

Listing 2. Class Example

typedef struct {
u in t 32 t MyScalar ;

} MySimpleClass ;

void∗ createMySimpleObject (const char ∗Name, int Argc ,
const temu CreateArg ∗Argv) ;

void destroyMySimpleObject (void ∗Obj) ;

void s ca la rWr i t e (void ∗Obj , temu Propval Pv , int Idx) ;
temu Propval sca larRead (void ∗Obj , int Idx) ;

TEMU PLUGIN INIT {
temu Class ∗Cls = temu reg i s t e rC l a s s (”MyClass” ,

createMySimpleObject ,
destroyMySimpleObject) ;

temu addProperty (Cls , ”myScalar” ,
o f f s e t o f (MySimpleClass , MyScalar) ,
teTY U32 ,
1 , // Number o f e lements (1 = s ca l a r)
sca larWrite ,
scalarRead ,
” Sca l a r i s used f o r smurf ing 42 smurfs ”) ;

}

Some emulators (e.g. the ESOC emulator and TSIM) provides a mechanism where a single callback
is used for all memory mapped device accesses. The simulator writer then has to implement an address
decoder, which often ends up as a list or vector search. In the best case this is done using a binary search or
a map, but linear scanning for the device model based on the physical address of the memory access is not
uncommon. These are of-course either O(lg n) or O(n) in complexity with several memory accesses being
performed in a cache unfriendly way. To avoid this performance bottleneck (which is known as the I/O
bottleneck), T-EMU 2 provides a cache friendly O(1) address decoder based on the same idea that is behind
virtual memory page tables.

In addition, several standard interfaces have been defined using the object system APIs. These include
the memory access interfaces, which can be used to implement memory mapped I/O models, serial port
interfaces, interrupt interfaces etc.

In order to facilitate communication with external simulators, the object system support the notion of
an external object. Using the external object support, existing SMP2 models can easily be integrated by
implementing the memory access interface.

II.D. Simulation Methods

In order to achieve high performance when running a machine with multiple CPU cores (e.g. the quadcore
NGMP), the simulated CPUs will be temporally decoupled. That means that the CPUs will not agree on
what the current time is. To ensure that the CPUs in the end roughly agrees, the user must set a time quanta
(in SRT) for the simulation and T-EMU will then run each processor using a single threaded round-robin
scheduler (single threaded scheduling guarantees a fully deterministic simulation). Round robin scheduling
is commonly used by several different emulators (including QEMU9) in order to emulate multicore systems.
The time quanta prevents the CPUs from running ahead of each other too much. One could imagine the

6 of 11

American Institute of Aeronautics and Astronautics

havoc that would be generated by one core being in idle mode and simply advancing the event queue while
another running a real application. The clocks in idle CPUs often advance hundreds of times faster than
wall-clock time.

Figure 3. Wall clock vs simulated real time

This is better illustrated in Figure 3. As can be
seen, initially at the start of the quanta, all CPUs
have the same notion of SRT = t, when a CPU is
scheduled, its clock is steadily increasing until the
end of quanta time (SRT = t + dt). While a CPU
is scheduled, the previously scheduled CPUs have
already reached SRT = t + dt and the following
CPUs are waiting to be scheduled and are still at
the start of the quanta (SRT = t).

As some type of models may assume a synchro-
nised time between processors (e.g. timers), T-EMU
supports the creation of synchronised events. Such
events must naturally be posted with an offset of be-
ing at least in the next quanta. If events are posted
as synchronised events, the different CPUs will have
roughly the same notion of time, with roughly it is
meant that the maximum difference in agreement is
bounded by the largest instruction cycle cost (e.g.

if a divide instruction takes 35 cycles, and if this was the last instruction in a quanta, then the timing offset
of that CPU may be up to 35 cycles with respect to the other CPUs). The reason for this is that each
instruction that is started will finish and advance the clock before the emulation cores are terminated.

Each CPU switch in the scheduler has a certain cost thus one typically achieve higher performance with
a longer quanta, however, certain operations such as busy waiting on other CPU cores can be significantly
slowed down when increasing the quanta (e.g. a core may wait for a whole quanta instead of a few cycles on
spin-locks or IPIc deliveries). The best value of the quanta is thus something that must be experimentally
determined by the user, and it can vary depending on the type and phase the application is in.

It is possible for the user to adjust the time quanta of the simulated machine at run-time. A use case of
this dynamic quanta configuration is to initially run faster, and when homing in on a software bug such as
a race condition which is dependent on the accuracy, the quanta can be reduced by the user.

The current mechanism for multiprocessor and multicore simulation in T-EMU is as mentioned a single
threaded round robin CPU scheduler and utilises the algorithm described above. Future versions of T-EMU
may include optional support for multi-threaded emulation which can increase performance at the expense
of having a fully deterministic behaviour. That said, even a multi-threaded simulation approach will by
necessity also use quantas to ensure that time is kept roughly in sync.

II.E. Memory Simulation

The memory simulation in T-EMU is based on a transaction model, with separation of fetch, read and write
operation. Each device model that needs to provide memory mapped registers (or other memory buffers)
must implement the memory access interface.

Whenever a memory operation is executed, the memory model will look up the device model associated
with the address (using an approach based on the multi-level page tables used by memory management
units) and invoke that model’s read or write handler.

As the astute reader may realise, this would be very slow when dealing with normal memory (ROM
and RAM) which is accessed at least once per instruction (in order to fetch the instruction from memory).
As a solution to this problem, most emulators, including T-EMU 2, provides a construct which is best
described as a software TLB. T-EMU 2 calls this mechanism an Address Translation Cache (ATC), while
other emulators such as QEMU5 and Simics15 use different terminology. These caches are essentially directly
mapped look-up tables that ensures that the common case for decoding an address to a memory page is only
a few instructions long.

cInter Processor Interrupt

7 of 11

American Institute of Aeronautics and Astronautics

Listing 3. Memory Access Interface

typedef struct temu MemTransaction {
u in t 64 t Va ; //!< 64 b i t v i r t u a l f o r un i f i e d 32/64 b i t i n t e r f a c e .
u in t 64 t Pa ; //!< 64 b i t p h y s i c a l address
u in t 64 t Value ; //!< Resu l t ing va lue (or wr i t t en va lue)

// ! Log s i z e o f the t r an sac t i on s i z e
u i n t 8 t S i z e ;

// ! Used f o r dev i c e models , t h i s w i l l be f i l l e d in wi th the o f f s e t
// ! from the s t a r t address o f the dev i c e (note i t i s in p r a c t i c e
// ! p o s s i b l e to add a dev i c e at mu l t i p l e l o c a t i o n s (which may happen in
// ! some rare cases)) .
u in t 64 t O f f s e t ;
void ∗ I n i t i a t o r ; //!< I n i t i a t o r o f the t r an sac t i on
void ∗Page ; //!< Page po in t e r (f o r address caching)
u in t 64 t Cycles ; //!< Cycle co s t f o r memory acces s

} temu MemTransaction ;

typedef struct temu MemAccessIface {
void (∗ f e t ch) (void ∗Obj , temu MemTransaction ∗Mt) ;
void (∗ read) (void ∗Obj , temu MemTransaction ∗Mt) ;
void (∗ wr i t e) (void ∗Obj , temu MemTransaction ∗Mt) ;

} temu MemAccessIface ;

II.F. Advantages of the Architecture

The architecture described in this paper has several advantages. The primary advantage is that the instruc-
tion definitions are independent from the emulation method. Consequently, it is relatively easy to extend
the system with for example binary translation.

Another advantage for T-EMU is that the supporting tools (e.g. the emulator generator) have all been
designed to be target independent. This target independence allows additional CPU architectures (e.g. ARM,
OpenRISC, PowerPC, RISCV, etc) to be added relatively quickly would a customer need such support.

At the time of writing, a new interpreter method is being implemented, which in the end does not require
any modifications of the instructions definitions, only a new interpreter emitter backend is needed.

III. Emulator Usage

III.A. Software Development

One of the more important use cases for an emulator is on-board software development and unit testing. As
it is often fairly expensive to acquire space qualified hardware (boards are often 20k or more, sometimes well
above 100k), especially early on in the project, having access to a simulation environment can be beneficial.

Running unit tests on an emulator instead of a completely different architecture, ensures that the software
handles low level issues such as endianess properly and it provides stress for the target compilers early on
in the development process. The risk of bugs in the target system compiler should not be understated, and
the earlier these can be caught the better.

In addition to ensuring representative endianess and the use of the target system compiler, emulators
provide additional benefits for software development. These include fully deterministic execution, ability
to checkpoint simulation state and for some emulators the ability to run code backwards. One of the
more important aspects is however the ability to use the emulator command line interface for running fully
automated tests. T-EMU for example allows for the execution of Python scripts together with the emulator,
these scripts can for example intercept and analyse emulated bus traffic (e.g. serial port traffic), greatly
simplifying unit testing.

8 of 11

American Institute of Aeronautics and Astronautics

III.B. Performance and Budget Analysis

Another use case for an emulator is to run performance analysis. Although not fully representative in all
cases, the accuracy of an emulator is in many cases much better than hand made estimates. Performance
analysis can be executed routinely and automatically, even before the hardware is available.

While timing accuracy is likely not 100 percent accurate, memory and some bus traffic budgets can be
fully accurate. A virtual 1553 bus could for example provide runtime warnings if the on-board software ever
exceeds certain thresholds.

III.C. Software Validation Facilities

A software validation facility (SVF) is a full system simulator whose purpose is primarily to execute more
complex system tests. SVFs can be used to test that the final on-board software does not exceed its budget
(see Section III.B) and that it interacts with its environment (e.g. through simulated remote terminals)
correctly.

For an SVF, unless hardware is in the loop, faster than real-time performance of the emulator is usually
not critically important as a self-contained software-only SVF will use virtual time only. Tests in SVFs are
often based on uplinking TCs and inspecting TM responses.

III.D. Operational Simulators

An operational simulator is a full system simulator (similar to an SVF) but with the integration into the
ground infrastructure. In an operational simulator, the primary user interface to the emulator is therefore the
mission control system. Operational simulators are used for both training of operators and for the testing of
different types of on-board control procedures and telecommands on the real on-board software, but without
having to risk the spacecraft or having the need to keep spare hardware around for this purpose.

Emulators provide a great deal of flexibility for operational simulators, and as they run the real flight
software, most bugs in the flight software is also simulated. That is, when testing operational procedures,
the test will be against the real software, not its specification.

IV. Experiments

In order to evaluate the performance of the emulator in its current state, three types of experiments have
been run. These include primarily synthetic benchmarks and some real-world applications. A more detailed
evaluation of the performance is available from 12.

When measuring emulator performance, there are two ways to do this, the first is to measure Times Real-
Time (TRT) or its reciprocal slowdown, the second is to measure the number of emulated instructions per
second (MIPS). The two measurements have different usages, the TRT numbers are useful for determining
the end user performance (which is often tightly connected to the simulator requirements) or when comparing
the emulator to real hardware. The MIPS number is useful when looking at the raw emulator performance
and when comparing different emulators. It should be noted that these can be very different. TRT, but not
MIPS, is effected by the virtual clock frequency of the emulated processor and whether the emulated CPU
enters idle mode. In idle mode, the emulator will fast forward time until the next event (e.g. an interrupt).
When the Linux system is idling at the prompt, it is not unusual to see the SRT advancing hundreds of
times faster than WCT, while the MIPS rating remains roughly the same.

Synthetic benchmarks include the execution of the Dhrystone integer benchmark, and while its qualities
as a benchmark can be discussed, it is the standard application used for testing emulator performance.
Numbers from the benchmark are widely published by different emulator vendors. A slight complication
from the use of Dhrystone, is that the benchmark produces its own MIPS numbers, these numbers does
not have anything to do with the emulated instruction count and will be effected by properties such as the
virtual clock frequency of the emulated processor. When referring to MIPS, here, unless explicitly stated,
the reference is to millions of emulated instructions per second.

The real world benchmarks which the emulator undergoes include the booting of Linux. However, this
being a non-widely available benchmark, we are unable to provide any comparative numbers for these tests.
Suffice to say, boot performance of Linux produced roughly the same emulated MIPS as the Dhrystone
benchmark did.

9 of 11

American Institute of Aeronautics and Astronautics

V. Results and Performance

Table 1 illustrates the performance achieved when running Dhrystone on different SPARCv8 emulators
on a 3.5 GHz host PC.

Table 1. Measured MIPS with Different Emulators and Configurations

Emulator MIPS

ESOC no-mmu dispatch 57.5 MIPS

ESOC no-mmu threaded 66.4 MIPS

ESOC mmu dispatch 25 MIPS

T-EMU 2.0 no-mmu 90.0 MIPS

T-EMU 2.0 mmu 90.0 MIPS

TSIM no-mmu 60 MIPSd

Simics no-mmu 300 MIPSe

We can draw two conclusions from these figures. The first conclusion is that the MMU implementation
in T-EMU is superior in performance to the ESOC emulator. This stem from the use of a highly efficient
address translation cache. The second conclusion to make is that for being an interpreted emulator (at the
moment), T-EMU is very fast. In-fact, in 12 it was showed that the theoretical performance of an interpreter
is around 1.5 − 1.7 times that of the ESOC emulator (between 94 and 115 MIPS), and T-EMU 2 is very
close to these numbers.

The only higher performing system we had access to data for, is Simics. Simics is a binary translator
which therefore is able to score higher performance than an interpreter is capable of. As T-EMU 2 has
been designed to be extensible enough that binary translation can be introduced, those numbers should be
reasonably representative of the future performance of T-EMU

VI. Future Work and Conclusions

As mentioned in Section II, the architecture was designed with flexibility in mind. Thanks to the use of the
LLVM toolchain and the abstraction of instruction decoders and semantics it is possible to migrate to more
high performing emulation methods such as direct pre-decoded threaded interpretation and binary translation
without modifying the instruction definitions. In the former case, the instruction decoder is replaced and
the emulator generates intermediate code (IR) that contains pointers to the instruction emulation routines.
The decoding for this type of IR is quite efficient and fast and allows for introduction of dynamic features
(such as the dynamic enabling and disabling of fast cache emulation).

In a binary translator, target code fragments are translated either offline (static translation) or during
run-time (dynamic translation) to native host code. The dynamic binary translation (DBT) approach is the
most general. In the static binary translation (SBT) case, the translation may be subject to more offline
optimisations during translation, but it suffers from being less general and not being able to deal with
self-modifying code (which include among other items boot loaders).

To support a hybrid system, where interpretation is used initially but binary translation is used for hot
code, it is advantageous to use the pre-decoded emulation method for the interpreter part as it allows for the
replacement of IR instructions representing branches with jumps to the dynamically generated code without
any significant performance overhead.

At present, Terma is working on supporting pre-decoded binary translation in T-EMU to pave the way
to full support for binary translation later on.

In addition to more advanced instruction set simulation methods, the APIs of T-EMU and surrounding
tools are also subject to evolve. A current development is a dedicated domain specific language designed to
make it easy to implement memory mapped device models. Such a language eliminates the direct interactions
the model writer must do with the T-EMU object system, and provides natural mechanisms for expressing
memory mapped registers with fields, post emulator events and to do automatic check-pointing. In an
experimental translation of a UART model written in C++, the line count dropped from around 1100 lines
to around 300, which is substantial reduction in lines of code.

10 of 11

American Institute of Aeronautics and Astronautics

References

1Introducing the WebKit FTLJIT. https://webkit.org/blog/3362/introducing-the-webkit-ftl-jit/. Accessed: 2016-
03-29.

2LLVM Website. http://llvm.org/. Accessed: 2016-03-14.
3NetBSD/amd64. http://wiki.netbsd.org/ports/amd64.
4OVPSim Website. http://www.ovpworld.org/. Accessed: 2016-03-14.
5QEMU internals: softmmu. http://vm-kernel.org/blog/2009/07/10/qemu-internal-part-2-softmmu/. Accessed:

2016-03-22.
6TSIM2 ERC32/LEON simulator. http://www.gaisler.com/index.php/products/simulators/tsim.
7Windriver Simics Website. http://windriver.com/products/simics/. Accessed: 2016-03-14.
8Fabrice Bellard. Qemu, a fast and portable dynamic translator. In Proceedings of the Annual Conference on USENIX

Annual Technical Conference, ATEC ’05, pages 41–41, Berkeley, CA, USA, 2005. USENIX Association.
9Jiun-Hung Ding, Po-Chun Chang, Wei-Chung Hsu, and Yeh-Ching Chung. PQEMU: A Parallel System Emulator Based

on QEMU. In 17th International Conference on Parallel and Distributed Systems, pages 276–283, 2011.
10Jakob Engblom and Dan Ekblom. Simics: a commercially proven full-system simulation framework. In Simulation &

EGSE Facilities for Space Programmes, 2006.
11C. W. Mattias Holm. A Fully Virtual Multi-Node 1553 Bus Computer System. In Data Systems in Aerospace (DASIA),

2006.
12Mattias Holm. Emulator Performance Study. In SESP 2015, 2015.
13Mattias Holm. T-EMU 2.0: The Next Generation LLVM Based Micro-Processor Emulator. In EuroLLVM 2015, 2015.
14Mattias Holm. The Terma Emulator Evolution. In SESP 2015, 2015.
15P. Magnusson and B. Werner. Efficient memory simulation in simics. In Simulation Symposium, 1995., Proceedings of

the 28th Annual, pages 62–73, Apr 1995.
16P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and

B. Werner. Simics: A full system simulation platform. Computer, 35(2):50–58, Feb 2002.
17James E. Smith and Ravi Nair. Virtual Machines - Versatile Platforms for Systems and Processes. 2005.

11 of 11

American Institute of Aeronautics and Astronautics

https://webkit.org/blog/3362/introducing-the-webkit-ftl-jit/
http://llvm.org/
http://wiki.netbsd.org/ports/amd64
http://www.ovpworld.org/
http://vm-kernel.org/blog/2009/07/10/qemu-internal-part-2-softmmu/
http://www.gaisler.com/index.php/products/simulators/tsim
http://windriver.com/products/simics/

	Introduction
	Related Work

	Architecture
	Instruction Decoding and Semantics
	Compilation Pipeline
	C-API
	Simulation Methods
	Memory Simulation
	Advantages of the Architecture

	Emulator Usage
	Software Development
	Performance and Budget Analysis
	Software Validation Facilities
	Operational Simulators

	Experiments
	Results and Performance
	Future Work and Conclusions

