Doc. no: TERMA/SPD/63/TEMU/MODREF PUBLIC @
Rev: 2.2
Date: 2020-06-18

TEMU

Model Reference

Version 2.2, 2020-06-18

© Terma GmbH, Germany, 2015-2023. Proprietary and intellectual rights of Terma GmbH, Germany are involved in the subject-matter of this material and all manufacturing, reproduction, use,
disclosure and sales rights pertaining to such subject-matter are expressly reserved. This material is submitted for a specific purpose as agreed in writing, and the recipient by accepting this material
agrees that this material will not be used, copied or reproduced in whole or in part, nor its content (or any part thereof) revealed in any manner or to any third party, except own staff, to meet the
purpose for which it was submitted and subject to the terms of the written agreement.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 2 of 101
Rev. no: 2.2

Table of Contents

1. Models 5
2. AMBA 6
2.1. Interfaces 6
2.2. Classes 6
2.3. Examples 8
3. APBUART 11
3.1. Loading the Plugin 11
3.2. Attributes 11
3.3. Limitations 12
4. CAN 13
4.1. Interfaces 13
4.2. Commands 14
4.3. Classes 14
4.4. Examples 15
5.CAN_OC 18
5.1. Loading the Plugin 18
5.2. Configuration 18
5.3. Limitations 20
6. Ethernet 21
6.1. Connections 21
6.2. Checksums 21
6.3. Auto Negotiation 22
6.4. Frames 22
6.5. Ethernet Link 23
6.6. PHY Model 23
6.7. MDIO Model 24
6.8. MAC Models 25
7. Generic Cache 26
7.1. Configuration 26
7.2. Properties 30
7.3. Limitations 31
8. GPIO Bus 32
8.1. Configuration 32
8.2. Class Info 32
8.3. Limitations 32
9. GPTIMER 34

9.1. Loading the Plugin 34

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference
Doc. no: TERMA/SPD/63/TEMU/MODREF
Rev. no: 2.2

9.2. Limitations

10. GRCAN
10.1. Loading the Plugin
10.2. Attributes
10.3. Registers
10.4. Limitations

11. GRETH
11.1. Loading the Plugin
11.2. Limitations
11.3. Limitations

12. GRGPIO
12.1. Loading the Plugin
12.2. Limitations

13. GRSPW1
13.1. Loading the Plugin
13.2. Configuration
13.3. Limitations
13.4. Examples

14. GRSPW2
14.1. Loading the Plugin
14.2. Configuration
14.3. Limitations
14.4. Examples

15. IRQMP
15.1. Loading the Plugin
15.2. Configuration
15.3. Limitations

16. LEON2 SoC
16.1. Loading the Plugin
16.2. Configuration
16.3. Limitations

17. Machine
17.1. Configuration
17.2. Limitations

18. MEC
18.1. Loading the Plugin
18.2. Configuration
18.3. Notes

18.4. Limitations

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

@

Page 3 0of 101

34
35
35
35
36
41
42
42
42
46
48
48
48
49
49
49
51
51
53
53
53
35
56
57
57
57
58
39
39
39
78
80
80
81
82
82
82
84
84

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF

oo Page 4 of 101
19. MIL-STD-1553 86
19.1. Bus Model 86
19.2. Configuration 86
19.3. Limitations 88
19.4. API 88
20. Interfaces 89
21. Serial Console 92
21.1. Loading the Plugin 92
21.2. API 92
21.3. Configuration 92
21.4. Limitations 93
22. Serial Console Ul 94
22.1. Loading the Plugin 94
22.2. Limitations 94
23. SpaceWire 95
23.1. API 95
23.2. Limitations 96
23.3. Commands 97
23.4. Models 97
23.5. Examples 98

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 5 of 101
Rev. no: 2.2

Chapter 1. Models

This is the reference manual for the TEMU models.
Each model description is normally structured using the following sections:

* Introduction
* Loading the Plugin
* Configuration

e Limitations

In addition, models have reference content such as properties, interfaces and registers listed.

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 6 of 101
Rev. no: 2.2

Chapter 2. AMBA

TEMU provides support for AMBA plug-and-play as used in the Gaisler GRLIB. The AMBA bus
support and interfaces are defined in temu-c/Bus/Amba.h. In addition to the interfaces implemented
by device models, the AhbCtr1l and ApbCtr1l classes are provided.

2.1. Interfaces

The interesting interfaces are defined in the temu-c/Bus/Amba.h header. This header provides
support constants and helper functions, used to work with the PnP info structs.

typedef struct {
uint32_t IdentReg;
uint32_t UserDef[3];
uint32_t Bar[4];

} temu_AhbPnpInfo;

typedef struct temu_AhbIface {
temu_AhbPnpInfo* (*getAhbPnp)(void *0bj);
} temu_AhbIface;

typedef struct {
uint32_t ConfigWord;
uint32_t Bar;

} temu_ApbPnpInfo;

typedef struct temu_ApbIface {

temu_ApbPnpInfo* (*getApbPnp)(void *0bj);
} temu_ApbIface;

2.2. Classes

There are two important classes provided, the AhbCtrl and ApbCtrl classes. These are available in
1ibTEMUAhbCtr1.so and 1ibTEMUApbCtrl.so

When configuring a non-standard LEON3 / LEON4 based processor, the AHB and APB controllers
must be instantiated and connected to devices implementing the plug and play interfaces. For the
AhbCtrl class, connections is done using the masters and slaves array properties. For the ApbCtrl
class, only the slaves property exist.

2.2.1. Attributes

Properties

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF

Rev. no: 2.2

Name
masters

object.timeSource

slaves

Interfaces

Name
Devicelface
MemAccessIface

ResetIface

Ports

Prop

2.2.2. Attributes

Properties

Name

object.timeSource

pnp.bar
pnp.identReg
pnp.userDef

slaves

Interfaces

Name

Ahblface
Devicelface
MemAccessIface

ResetIface

Ports

PUBLIC

Type
[64 x iref / <unknown>]

object

[64 x iref / <unknown>]

Type
Devicelface
MemAccessIface

ResetIface

Iface

Type
object

[4 x uint32_t]
uint32_t

[3 x uint32_t]

[512 x iref / <unknown>]

Type

AhblIface
Devicelface
MemAccessIface

ResetIface

@

Page 7 of 101

Description

Time source object (a cpu or
machine object)

Description

Description

Description

Time source object (a cpu or
machine object)

Description

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 8 of 101
Rev. no: 2.2

Prop Iface Description

2.3. Examples

The first example shows how to create and connect the AHB and APB bus controllers.

import AhbCtrl
import ApbCtrl

Create two bus objects
object-create class=AhbCtrl name=ahbctrl0
object-create class=ApbCtrl name=apbctrl@

Map to the normal addresses
memory-map memspace=memd addr=0x800ff000 length=0x1000 object=apbctrl®
memory-map memspace=mem@ addr=0xfffff000 length=0x1000 object=ahbctrl®

Connect various APB devices to the APB controller
connect a=apbctrl@.slaves b=ftmctrl@:ApbIface
connect a=apbctrl@.slaves b=apbuart@:ApbIface
connect a=apbctr1@.slaves b=irgMp@:ApbIface

connect a=apbctrl@.slaves b=gpTimer@:ApbIface
connect a=apbctrl@.slaves b=ahbstat@:ApbIface

Connect various AHB devices to the AHB controller
connect a=ahbctrl@.masters b=cpu@:AhbIface

connect a=ahbctrl@.slaves b=ftmctrl@:AhbIface
connect a=ahbctrl@.slaves b=apbctrl@:AhbIface

The next example shows how to implement a simple APB device.

#include "temu-c/Bus/Amba.h"

// This is the model type, we need to add the Pnp info.
typedef struct MyDevice {

temu_ApbPnpInfo Pnp;

/] ...
} MyDevice;

// Implement the APB PNP interface
temu_ApbPnpInfo*
getApbPnp(void *0bj)
{
MyDevice *Dev = (MyDevice*)0bj;

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 9 of 101
Rev. no: 2.2

return &Dev->Pnp;

}

temu_ApbIface ApbIface = {
.getApbPnp = getApbPnp
i

// Define functions to allocate and destroy the object
void*
create(int Argc, const temu_CreateArg *Argv)
{
MyDevice *Dev = malloc(sizeof(MyDevice));
memset(Dev, @, sizeof(MyDevice));

// PNP init
temu_apbSetVendorId(&MyDevice->Pnp, 0x99);
temu_apbSetDeviceId(&MyDevice->Pnp, 0x001);
temu_apbSetVersion(&MyDevice->Pnp, 1);

temu_apbSetAddr (&MyDevice->Pnp, 0);
temu_apbSetCP(&MyDevice->Pnp, 0);

temu_apbSetMask (&MyDevice->Pnp, Oxfff);
temu_apbSetType(&MyDevice->Pnp, 1); // APB 1/0 space

return MyDevice;

}

void

dispose(void *0bj)

{
MyDevice *Dev = (MyDevice*)0bj;
free(Irq);

}

// Define the device interface

void

reset(void *0bj, int ResetKind)

{

}

void

mapDevice(void *0bj, uint64_t Addr, uintb4_t Len)

{

MyDevice *Dev = (MyDevice*)0bj;
temu_apbSetAddr (&Dev->Pnp, Addr);
+

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 10 of 101
Rev. no: 2.2

temu DeviceIface Devicelface = {
reset, // (Called on resets
mapDevice, // Called when a device is mapped to a memory location.

b

TEMU_PLUGIN_INIT
{

temu_Class *cls = temu_registerClass("MyClass", create, dispose);

temu_addInterface(cls, "ApbIface", "ApbIface", &ApbIface);
temu_addInterface(cls, "DeviceIface", "DeviceIface", &Devicelface);

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 11 of 101
Rev. no: 2.2

Chapter 3. APBUART

The ApbUart model is available in the ApbUart plugin. That plugin is part of the GRLIB device
library feature. The ApbUart model supports both FIFO simualtion and infinite speed UARTs. In
infinite speed mode bytes are sent directly when they are written to the data register.

3.1. Loading the Plugin

import ApbUart

3.2. Attributes

3.2.1. Properties

Name Type Description

config.clockDivider uint32_t

config.fifoSize uint8_t

config.infiniteUartSpeed uint8_t

config.interrupt uint8_t

control uint32_t

data uint32_t

fifo_debug uint32_t

irqCtrl iref / <unknown>

object.timeSource object Time source object (a cpu or
machine object)

pnp.bar uint32_t

pnp.config uint32_t

rxFifo.data

[32 x uint8 _t]

rxFifo.size uint8_t
rxFifo.start uint8_t
rxFifo.usage uint8_t

scaler uint32_t

status uint32_t

tx iref / <unknown>

txFifo.data

txFifo.size

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

[32 x uint8_t]

uint8 t

PUBLIC
TEMU: Model Reference
Doc. no: TERMA/SPD/63/TEMU/MODREF Page 12 of 101

Rev. no: 2.2

Name Type Description
txFifo.start uint8_t

txFifo.usage uint8_t

txShift uint8_t

3.2.2. Interfaces

Name Type Description
Apblface Apblface

Devicelface Devicelface

MemAccessIface MemAccessIface

ResetIface ResetIface

UartIface Seriallface
3.2.3. Ports

Prop Iface Description
[9:¢ UartIface serial port

3.3. Limitations

* Loop back mode is not presently supported.

* Control flow (cts) is not supported

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 13 of 101
Rev. no: 2.2

Chapter 4. CAN

TEMU provides support for CAN bus based devices. The bus model interfaces are available in:
"temu-c/Bus/Can.h". In addition to the interfaces one CAN bus model is provided.

As CAN is a multi-node bus, a bus model object is needed to route messages to the relevant
destination.

There are two types of CAN classes that can be created, firstly bus models and secondly device
models. The difference is that a bus model is responsible for routing messages. To the device
models, and the device models implement CAN message reception logic.

The standard SimpleCANBus bus model, provides fairly dumb logic. It routes a sent message to all
devices connected to the CAN bus (except the sender device). However, CAN devices often
implements filtering of message IDs in hardware, and this filtering (which is typically based on a
mask and code pair) can be used to define a smart CAN bus model which can route frames using
internal routing tables.

However, a smart CAN bus model is not necessarily faster for a small CAN network. Currently,
TEMU is not delivered with a smart bus model, in fact the optimal routing algorithm depends on
the allocation of message IDs and whether or not extended message IDs are used and how many
filters are supported per device. While a smart bus model may be provided in the future, none is
provided at present.

4.1. Interfaces

The interesting interfaces are defined in the temu-c/Bus/Can.h header. This header also define
inline functions to help construct CAN frames.

typedef struct {
uint8_t Data[8];
uint32_t Flags;
uint8_t Length;
uint8 t Error;

} temu_CanFrame;

struct temu_CanDevIface {
void (*connected)(void *Dev, temu_CanBusIfaceRef Bus);
void (*disconnected)(void *Dev);
void (*receive)(void *Dev, temu_CanFrame *Frame);

+

struct temu_CanBusIface {
void (*connect)(void *Bus, temu_CanDevIfaceRef Dev);
void (*send)(void *Bus, void *Sender, temu_CanFrame *Frame);
void (*enableSendEvents)(void *Bus);
void (*disableSendEvents)(void *Bus);

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 14 of 101
Rev. no: 2.2
void (*reportStats)(void *Bus);
void (*setFilter)(void *Bus, temu CanDevIfaceRef Dev, int FilterID,
uint32_t Mask, uint32_t Code);

+

The CAN frame is central to the transmission of CAN data. It is not a bit by bit representation of the
CAN protocol, rather it is a simplified format that omit bits that are implicit and ensures that
relevant bits such as RTR is fixed in location.

If a real CAN frame is needed, you need to transform the frame struct to the needed representation.
Note that the struct is optimised for performance (e.g. Data is first and can be bitcopied as a uint64).

Device models are typically simple, they implement the connected, disconnected and receive
functions. Of-course, if the device also need registers and MMIO handling, it tend to get more
complex.

As can be seen, the device and bus interface support connect and disconnect events. The purpose of
these are to support hot-plugging of CAN devices. As these connect and disconnect events are
supported, the normal connect command should not be used when connecting a CAN device, rather
the "can-connect" command is to be used.

4.2. Commands

Two CAN bus related commands are provided:

Name Description
can-connect Connect a CAN device to a CAN bus.
can-disconnect Disconnect CAN device from a CAN bus.

4.3. Classes

The SimpleCAN bus class provides a CAN bus model. In the SimpleCANBus class, messages are
forwarded to all connected devices (except the sending one). If this results in performance issues, it
is possible to write a filtering CAN bus model.

4.3.1. Attributes

Properties

Name Type Description

devices irefarray / <unknown> CAN devices attached to bus
object.timeSource object Time source object (a cpu or

machine object)

stats.lastReportSentBits uint64 t Statistics

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC

TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF

Rev. no: 2.2

Name Type Description
stats.sentBits uint64 t Statistics
Interfaces

Name Type Description
CanBuslIface CanBusIface CAN Bus Interface
Ports

Prop Iface Description

4.4. Examples

This example shows how to create a simple CAN device and connect it to a bus model.

exec ut700.temu

import MyCanDevice

Create a can bus

create class=SimpleCANBus name=canbus@
create class=MyCANClass name=mycan®

can-connect bus=canbus@:CanBusIface dev=occan@:CanDevIface # From ut700
can-connect bus=canbus@:CanBusIface dev=mycan@:CanDevIface

The next example shows how to implement a simple CAN device

#include "temu-c/Bus/Can.h"
#include "temu-c/Bus/0Objsys.h"

// This is a device / RTU model, it needs to know about its CAN bus
typedef struct MyCanDevice {

temu_Object Super;

temu_CanBusIfaceRef Bus;
} MyCanDevice;

void*
create(const char *Name, int Argc, const temu_CreateArg *Argv)
{

MyCanDevice *Dev = malloc(sizeof(MyCanDevice));

memset(Dev, @, sizeof(MyCanDevice);

return Dev;

}

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

@

Page 15 of 101

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 16 of 101
Rev. no: 2.2

void

dispose(void *0bj)

{
MyCanDevice *Dev = (MyCanDevice*)0bj;
free(Dev);

}
// Implement the CAN Device interface

void
connected(void *0bj, temu_CanBusIfaceRef Bus)
{
MyCanDevice *Dev = (MyCanDevice*)0bj;
Dev->Bus = Bus;
temu_logInfo(Dev, "connected to CAN bus");

}
void
disconnected(void *0bj)
{
MyCanDevice *Dev = (MyCanDevice*)0bj;
Dev->Bus = {NULL, NULL};
// NOTE: This should also stop any pending events related to
// message transmissions
temu_logInfo(Dev, "disconnected from CAN bus");
}
void
receive(void *Dev, temu_CanFrame *Frame)
{
temu_logInfo(Dev, "received CAN message with msg id %u",
temu_canGetIdent(Frame));
+
temu_CanDevIface Canlface = {
connected,
disconnected,
receive,

};

TEMU_PLUGIN_INIT
{

temu_Class *cls = temu_registerClass("MyCANClass", create, dispose);

temu_addProperty(cls, "CANBus", teTY_IfaceRef, 1);
temu_addInterface(cls, "CanDevIface", "CanDevIface", &CanIface);

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 17 of 101
Rev. no: 2.2

}

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 18 of 101
Rev. no: 2.2

Chapter 5. CAN_OC

The CAN_OC device is part of the OpenCores and the GRLIB IP libraries. It is available in
1ibTEMUOpenCores.so.

5.1. Loading the Plugin

import OpenCores

5.2. Configuration

There are two configuration parameters in the CAN device. Firstly the config.interrupt property
can be set to influence the interrupt that is raised with the IRQ controller. Setting that property also
updates the AHB PnP info.

The second configuration property is config.infiniteSpeed. If that property is set, messages will be
sent immediately instead of being scheduled.

The device should be connected to an interrupt controller and a CAN bus, to work properly.

5.2.1. Attributes

Properties

Name Type Description

basiccan.acceptCode uint8_t Accept Code register for
BasicCAN mode.

basiccan.acceptMask uint8_t Accept Mask register for
BasicCAN mode.

basiccan.ctrl uint8_t Control register for BasicCAN
mode.

basiccan.txID [2 x uint8 _t] TxID registers for BasicCAN
mode.

bus iref / <unknown> CAN bus the device is connected
to.

busTiming [2 X uint8_t] Bus Timing registers.

clockDivider uint8_t Clock Divider register.

command uint8_t Command register.

config.infiniteSpeed uint8_t Enable infinite speed mode (no

delays when sending messages).

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF

Rev. no: 2.2

Name

config.interrupt

fifo.data
fifo.start
fifo.usage
interrupt
irqCtrl

object.timeSource

pelican.acceptCode

pelican.acceptMask

pelican.arbLostCaputure

pelican.errCodeCapture

pelican.errWarnLimit

pelican.interruptEnable

pelican.mode

pelican.rxErrCounter

pelican.rxMsgCounter

pelican.txErrCounter

pelican.txFI

pelican.txID

status

txData

PUBLIC

Type

uint8 t

[64 X uint8 _t]
uint32_t

uint32 t

uint8_t

iref / <unknown>

object

[4 x uint8 t]

[4 x uint8 _t]

uint8 _t

uint8_t

uint8 t

uint8_t

uint8 t

uint8_t

uint8 t

uint8_t

uint8 t

[4 x uint8 _t]

uint8 t

[8 x uint8 _t]

@

Page 19 of 101

Description

External interrupt raised with
IRQ controller.

RX FIFO data buffer.

RX FIFO buffer start location.
RX FIFO buffer usage.
Interrupt register.

Interrupt controller.

Time source object (a cpu or
machine object)

Accept Code registers for
PeliCAN mode.

Accept Mask registers for
PeliCAN mode.

Arbitration Lost Capture
register for PeliCAN mode.

Error Code Capture register for
PeliCAN mode.

Error Warning Limit register
for PeliCAN mode.

Interrupt Enable register for
PeliCAN mode.

Mode register for PeliCAN
mode.

RX Error Counter register for
PeliCAN mode.

RX Message Counter register for
PeliCAN mode.

TX Error Counter register for
PeliCAN mode.

TX Frame Info register for
PeliCAN mode.

TxID registers for PeliCAN
mode.

Status register.

TX data buffer (excluding TX FI
and TX ID registers).

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference
Doc. no: TERMA/SPD/63/TEMU/MODREF Page 20 of 101
Rev. no: 2.2
Interfaces
Name Type Description
Ahblface Ahblface AHB interface
CanDevlIface CanDevlIface CAN device interface.
Devicelface Devicelface Device interface.
MemAccesslface MemAccessIface Memory access interface for

memory mapped registers.

ResetIface ResetIface
Ports
Prop Iface Description

5.3. Limitations
The following deviations from real hardware are known to exist with this model:
» The controller clears the RX and TX buffers on reset. This is not the proper behaviour and may
have an impact on FDIR. Let us know if this is an issue.

* With all CAN models, there is no arbitration of messages in the simulated world and busses are
not synchronised.

* The model does at present not register filters with the CAN bus model.
* The model currently ignores the error field in the CAN frame objects.

* The model currently assumes the CAN bus is running at 1 Mb/s (in non-infinite speed mode).
This is arguably incorrect and the timing should be picked from the bus timing register, this has
however not yet been done. Contact Terma if this is this is critical for your needs.

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 21 of 101
Rev. no: 2.2

Chapter 6. Ethernet

TEMU provides support for Ethernet bus based devices. To support the development of custom MAC
controllers, TEMU provides three generic models.

The MDIOBus model implements MDIO routing. As multiple MDIO devices can be connected to the
same bus, a bus model is needed.

A GenericPHY model is implemented to expose the MDIO interface to the MAC models.

The GenericPHY model can be attached to the EthernetLink model. EthernetLink is responsible for
routing EthernetFrames between registered nodes. It has two routing lists. Firstly, a list of
promiscuous nodes that will receive all messages. Secondly, a routing map for non-promiscuous
nodes.

When the EthernetLink model receives a frame, it forwards the frame to all the promiscuous nodes.
Then, it routes it to the destination MAC.

The EthernetlLink assumes unique MACs, thus it will emit a warning in the case of a MAC address
collision.

6.1. Connections

An ethernet link must be connected to its attached PHYs. Connection is done using the connect
command.

Example 1. Connect Syntax

ethernet-connect link=ethlink0 phy=phy0:PHYIface

Example 2. Disconnect Syntax

ethernet-disconnect link=ethlink0 phy=phy0:PHYIface

6.2. Checksums

Ethernet frames typically have a checksum that is generated and checked by hardware. To optimise
the bus model, it is expected that MAC models supports opt in control on checksum generation and
checking. This applies to all checksums, including Ethernet frame CRCs and IP header, TCP, UDP
checksums. Since the Ethernet link is fully virtual, data cannot normally be corrupted in transit.
Thus checksum checking and generation would be a waste of cycles.

There are still several usecases where one want to enable checksumes:

* When viewing capture files with Wireshark, the tool will complain if ethernet CRCs are invalid.

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 22 of 101
Rev. no: 2.2

* When receiving frames in a device which do not have hardware assisted CRC checking.

Thus, normally Ethernet CRC generation and checking will be disabled, while TCP/UDP/IP checksum
generation (but not hardware checking) will be enabled.

6.3. Auto Negotiation
The ethernet model supports autonegotiation for transfer speed capabilities.

The process is based on issuing an auto-negotiation request to the ethernet link model. The link will
then issue autonegotiationg requests to each attached PHY, and finally call autonegotiateDone for
all attached PHYs.

Each PHY will be called with the current known capabilities. It should return the same capabilities
with potentially some of them cleared.

The actual final capabilities are reported with autonegotiateDone.
There, a PHY will select the highest priority common mode. Which by the standard is:

40GBASET FD
25GBASE T FD
10GBASE T FD
SGBASET FD
2.5GBASETFD
1000BASE T FD
1000BASE T HD
100BASE T2 FD

© ® N o ok w o

100BASE TX FD

[
e

100BASE T2 HD

—
[N

. 100BASE T4

[EnN
N

. 100BASE TX HD

[
w

. 10BASET FD
14. 10BASE T HD

Note that TEMU does not support emulation of 2.5 GBASE and above at this moment.

6.4. Frames
Ethernet frames in TEMU are structs containing a flag field, data and an optional preamble.

The data field is a COW buffer which contains the level 2 ethernet frame data.

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 23 of 101
Rev. no: 2.2

The preamble will typically be ignored and not set for most MACs. However if it is set to somthing
non-standard, a device can indicate this by setting the flag TEMU_ETH_NON_STANDARD_PREAMBLE.

6.5. Ethernet Link

6.5.1. Frame Capture

The ethernet link can be instructed to dump all traffic to a PCAPNG file.

o Wireshark may flag frames as having invalid CRCs. To avoid this you can enable
CRC generation in the MAC, or turn off checking in Wireshark.

To enable capture execute the enableCapture command ont he ethernet link.

Example 3. Enable Capture Command

ethernet-link-enable-capture link=ethlinkO file="foo.pcap"

6.5.2. Attributes

Properties

Name Type Description

object.timeSource object Time source object (a cpu or
machine object)

Interfaces

Name Type Description

EthernetlIface temu::EthernetIface

Ports

Prop Iface Description

6.6. PHY Model

The GenericPHY is a PHY / MII device which supports both the MDIO interface and the PHY interface
for sending/receiving ethernet frames.

The GenericPHY device class by default enables support for BASE10, BASE100 and BASE1000
transfers. To only enable specific speed modes, the constructor accepts arguments:

e basel10:1

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 24 of 101
Rev. no: 2.2

e base100:1
* base1000:1

If any of these are set, the unset ones will be disabled.

Thus by default a PHY supports all BASE10, BASE100 and BASE1000 modes. By setting the base10
argument, only BASE10 modes will be supported. By setting base10 and base 100 arguments, only
BASE10 and BASE100 will be supported.

At present it is not possible to control the support on a lower level.

6.6.1. Attributes

Properties

Name Type Description

autoNegAdvertisment uint16_t Auto negotiation advertisment
register

autoNegotiationExpansion uint16_t Auto negotiation expansion
register

basicModeConfig uint16_t Basic mode config register

basicModeStatus uint16_t Basic mode status register

ethernetLink iref / <unknown> Ethernet link

linkPartnerAbility uint16_t Link partner ability register

macDevice iref / <unknown> MAC device

object.timeSource

object

Time source object (a cpu or
machine object)

phyID [2 X uint16_t] Physical ID registers
Interfaces

Name Type Description
MDIOIface temu::MDIOIface

PHYIface temu::PHYIface

Ports

Prop Iface Description

6.7. MDIO Model

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 25 of 101
Rev. no: 2.2

The MDIO bus distributes MDIO control messages and supports routing of them. The MDIO bus use
the same interface as an MDIO device. Thus, if only one MDIO device (e.g. GenericPHY) is available

no MDIO bus instance is needed.

6.7.1. Attributes

Properties

Name Type Description
macDevice iref / <unknown>

object.timeSource object Time source object (a cpu or

machine object)

phyDevices [32 x iref / <unknown>]

Interfaces

Name Type Description
MDIOIface temu::MDIOIface

Ports

Prop Iface Description

6.8. MAC Models

TEMU comes with some bundled MAC models. In some cases it will be needed to implement
additional project specific MAC models.

Consult the eth-device example for more info.

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 26 of 101
Rev. no: 2.2

Chapter 7. Generic Cache

TEMU supports the use of cache models. However, cache models, at least when they are non-
statistical have a significant impact on performance, and therefor, normally cache models are not
used when running the emulator.

For the cases where a cache model is needed, the generic cache model is likely to be useful (see
limitations for when it is less useful). It is a highly configurable cache model and supports being
used, both as Harward style caches (separate I- and D-caches) and as a unified cache.

CAUTION : When connecting the generic cache model in the memory hierarchy, it will intercept
every memory transaction, and disable the ATC for any fetched, read or written data. This means
that performance is significantly impacted firstly due to the need to visit the memory system for
every fetch, read and write, but also and especially in a system with an enabled MMU, in these
systems, the CPU will need to do a VM table walk for every memory access, which is very costly in
terms of performance. Note that these table walks may be optimised in the future.

The cache model will handle memory accesses with the TEMU_MT_CACHEABLE flag set. This flag
can be set when mapping in a device (e.g. RAM or ROM).

7.1. Configuration

7.1.1. Attributes

Properties

Name Type Description

data.lineBits uint32_t

data.lineMask uint32_t

data.lineSize uint32_t line size in bytes

data.lineWordSizel.g2 uint32_t log 2 of line-size in words

data.replacementPolicy int32_t data cache replacement policy
(0O=none, 1=Iru, 2=Irr, 3=rnd)

data.rndReplaceWay int32_t

data.setBits uint32 _t

data.setMask uint32_t

data.setShift uint32_t

data.sets uint32_t number of sets

data.status uint32 _t status of data cache

data.ways uint32_t number of ways in the cache

dcacheCtrl iref / <unknown> data cache controller

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 27 of 101

Rev. no: 2.2

Name Type Description

fetchHits uint64_t

fetchMisses uint64_t

fetchPenalty int32_t

icacheCtrl iref / <unknown> instruction cache controller

instr.lineBits uint32 t

instr.lineMask uint32_t

instr.lineSize uint32 _t line size in bytes

instr.lineWordSizeLg2 uint32_t log 2 of line-size in words

instr.replacementPolicy int32_t instruction cache replacement
policy (O=none, 1=Iru, 2=Irr,
3=rnd)

instr.rndReplaceWay int32_t

instr.setBits uint32_t

instr.setMask uint32_t

instr.setShift uint32_t

instr.sets uint32_t number of sets

instr.status uint32 t status of instruction cache

instr.ways uint32_t number of ways in the cache

isSplitCache int32_t

isWriteAllocate int32_t

isWriteBack int32_t

object.timeSource object Time source object (a cpu or
machine object)

postTransaction iref / <unknown>

preTransaction iref / <unknown>

readHits uint64_t

readMisses uint64 t

readPenalty int32_t

wordSize int32_t

writeHits uint64_t

writeMisses uint64 t

writePenalty int32_t

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference
Doc. no: TERMA/SPD/63/TEMU/MODREF
Rev. no: 2.2
Interfaces
Name Type
DCachelface Cachelface
ICachelIface Cachelface
ObjectIface ObjectIface
PostAccessIface MemAccessIface
PreAccesslIface MemAccessIface
Ports
Prop Iface

7.1.2. Arguments

size

Unified cache size in bytes.

instrSize

Instruction cache size in bytes.

dataSize

Data cache size in bytes.

ways

Number of ways in a unified cache (must be power of 2)

instrWays

Number of ways in instruction cache (must be power of 2)

dataWays

Number of ways in data cache (must be power of 2)

lineSize

Line size for unified cache

dataLineSize

Line size for data cache

instrLineSize

Line size for instruction cache

@

Page 28 of 101

Description

Description

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 29 of 101
Rev. no: 2.2

wordSize

Size of a word in bytes (defaults to 4)

separate
Set to 1 to turn the cache model to separate I- and D-caches. Set to 0 to make the cache a unified

cache. This option affects the interpretation of the size, ways and lineSize arguments (see above).
7.1.3. Interfaces

The following interfaces can be used to connect the generic cache model:

PreAccesslIface
A MemAccesslface that receives memory access events before they reach the target device.

PostAccessIface
A MemAccesslIface that handles memory access events after they reach the target device.

7.1.4. Properties

The following properties are used for configuring the cache model and to connect the model in the
object graph.

preTransaction

Memory access interface reference for next pre-access handler.

postTransaction

Memory access interface reference for next post-access handler.

icacheCtrl

Optional interface reference for a instruction cache controller object.

dcacheCtrl

Optional interface reference for a data cache controller object.

instr.replacementPolicy

Replacement policy used when fetching instructions. Set to 0 = NONE (or directly mapped / 1-
way set associative cache). 1 = LRU, 2 = LRR and 3 = RND. Automatically set to 0 when ways is set
to 1.

data.replacementPolicy

Replacement policy used when accessing data. Set to 0 = NONE (or directly mapped / 1-way set
associative cache). 1 = LRU, 2 = LRR and 3 = RND. Automatically set to 0 when ways is set to 1.

isSplitCache

Cache is split and has separate instruction and data caches.

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 30 of 101
Rev. no: 2.2

isWriteBack
Cache is write-back cache, not supported at the moment.

isWriteAllocate

Set to non-zero to have the cache allocate a line in case of a write miss. Set to zero to avoid line
allocation.

fetchPenalty
Cost for fetching from a cached line.

readPenalty
Cost for reading from a cached line.

writePenalty

Cost for writing to a cached line.

wordSize

Word size for cache (defaults to 4, do not modify unless connecting to 64-bit processor
architectures).

instr.sets

Number of sets in the instruction cache.

instr.ways

Number of ways in the instruction cache.

instr.lineSize

Instruction line size in bytes.

data.sets

Number of sets in the data cache.

data.ways

Number of ways in the data cache.

data.lineSize

Data line size in bytes.

7.2. Properties

The generic cache model contains the following counters that can be inspected to get an idea of hit
and miss-rates.

fetchHits

Number of cache hits when fetching instructions.

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 31 of 101
Rev. no: 2.2

fetchMisses

Number of cache misses when fetching instructions.

readHits

Number of cache hits when reading data.

readMisses
Number of cache misses when reading data.

writeHits

Number of cache hits when writing data.

writeMisses

Number of cache misses when writing data.

7.3. Limitations

* The cache does not emulate write-back penalties for write-back caches at present. This means
that the evict functions will behave as the invalidate functions.

* Number of ways must be a power of 2. That means that 1- 2- and 4- way set associative caches
are fine, but 3-way set associative caches are not emulated by the generic cache model.

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 32 of 101

Rev.no: 2.2
Chapter 8. GPIO Bus
A This bus model is deprecated. Users should migrate to the Signallface.

The GPIO bus model is one of the standard bus models available in TEMU. The bus model maintains
the values of 64 GPIO pins, and a notification list where pin updates can be forwarded to an
arbitrary number of models when pin values have changed.

This does place a limitation, in that a model must know which pin it is connected to, which may not
be ideal. The recommended approach is to ensure that the model maintains its own user
configurable mask for filtering out the relevant bits.

8.1. Configuration

The GpioBus model can be configured by connecting GPIO clients to the Clients property. No other
configuration capabilities are provided.

8.2. Class Info

8.2.1. Attributes

Properties

Name Type Description

Bits uint64_t

Clients irefarray / <unknown>

object.timeSource object Time source object (a cpu or
machine object)

Interfaces

Name Type Description

GpioBuslface GpioBuslface

Ports

Prop Iface Description

8.3. Limitations

The primary limitation of the GPIO bus model is that pin updates using the GpioBuslface will be
distributed to all GpioClients that have been connected to the GPIO bus. If requested the bus model
can be augmented with direct distribution properties for forwarding individual pin changes to

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 33 of 101
Rev. no: 2.2

predetermined objects. This has not been implemented yet though, contact us if you need support
for this.

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 34 of 101
Rev. no: 2.2

Chapter 9. GPTIMER

The GPTIMER is part of the GRLIB device library from Gaisler. The timer runs using synchronised
events in order to ensure that would a timer tick be broadcasted by the interrupt controller, then
the IRQ should be taken at roughly the same time.

9.1. Loading the Plugin

import GpTimer

9.2. Limitations

The following deviations from real hardware are known to exist with this model:

The Disable Timer Freeze bit is always 1 and cannot be configured.

The Debug Halt bit for each timer is always 0 and cannot be altered.

* Chained timers are not supported at the moment.

The last timer does not work as a watchdog.

* As the timer utilise synchronised events, the minimum time for a timer expiration on a multi-
core CPU would be equal to the time-quanta that the machine has been configured with.

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 35 of 101
Rev. no: 2.2

Chapter 10. GRCAN

The GRCAN model is available in the GrCan plugin.
10.1. Loading the Plugin

import GrCan

10.2. Attributes

10.2.1. Properties

Name Type Description

bus iref / CanBuslIface CAN bus

cfg uint32_t Congifuation register
config.irq uint8_t Interrupt number
config.singlelrq uint8_t Single interrupt

ctrl uint32_t Control register

irqCtrl iref / IrqCtrliface IRQ controller

irgMask uint32_t Interrupt register

mem iref / Memorylface Memory

object.timeSource object Time source object (a cpu or

machine object)

pendlIrq uint32_t Pending interrupt register
rxChanAddr uint32_t RX channel address register
rxChanCode uint32_t RX channel code register
rxChancCtrl uint32_t RX channel control register
rxChanlIrq uint32_t RX channel irq register
rxChanMask uint32_t RX channel mask register
rxChanRd uint32_t RX channel read register
rxChanSize uint32_t RX channel size register
rxChanWr uint32_t RX channel write register
stat uint32_t Status register
syncCodeFilt uint32_t SYNC code filter register

syncMaskFilt uint32_t SYNC mask filter register

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC

TEMU: Model Reference
Doc. no: TERMA/SPD/63/TEMU/MODREF
Rev. no: 2.2
Name Type
txChanAddr uint32 t
txChanCtrl uint32_t
txChanlrq uint32_t
txChanRd uint32_t
txChanSize uint32 t
txChanWr uint32_t
10.2.2. Interfaces
Name Type
ApblIface Apblface
CanDevlIface CanDevlIface
MemAccessIface MemAccessIface
10.2.3. Ports
Prop Iface
10.3. Registers

A Register support is currently experimental!

10.3.1. Register Bank default

Register cfg

Congifuation register
Cold reset value: 0x0

Warm reset value: 0x0

Field Mask Cold

Register stat

Status register

@

Page 36 of 101

Description

TX channel address register
TX channel control register
TX channel irq register

TX channel read register
TX channel size register

TX channel write register

Description
APB P&P interface
CAN device interface

Memory access interface
(registers)

Description

Warm Description

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC

TEMU: Model Reference
Doc. no: TERMA/SPD/63/TEMU/MODREF
Rev. no: 2.2

Cold reset value: 0x0

Warm reset value: 0x0

Field Mask Cold Warm

Register ctrl

Control register
Cold reset value: 0x0

Warm reset value: 0x0

Field Mask Cold Warm

Register syncMaskFilt

SYNC mask filter register
Cold reset value: 0x0

Warm reset value: 0x0

Field Mask Cold Warm

Register syncCodeFilt

SYNC code filter register
Cold reset value: 0x0

Warm reset value: 0x0

Field Mask Cold Warm

Register pendirq

Pending interrupt register
Cold reset value: 0x0

Warm reset value: 0x0

@

Page 37 of 101

Description

Description

Description

Description

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

TEMU: Model Reference
Doc. no: TERMA/SPD/63/TEMU/MODREF

Rev. no: 2.2

Field

Register irgMask

Interrupt register

Cold reset value: 0x0

Warm reset value: 0x0

Field

Register txChanCitrl

TX channel control register

Cold reset value: 0x0

Warm reset value: 0x0

Field

Register txChanAddr

TX channel address register

Cold reset value: 0x0

Warm reset value: 0x0

Field

Register txChanSize

TX channel size register

Cold reset value: 0x0

Warm reset value: 0x0

Field

fVIask _Cold
fV[ask f:old
TV[ask -Cold
T\’[ask -Cold
Mask Cold

PUBLIC

Warm

Warm

Warm

Warm

Warm

@

Page 38 of 101

Description

Description

Description

Description

Description

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 39 of 101
Rev. no: 2.2

Register txChanWr

TX channel write register
Cold reset value: 0x0

Warm reset value: 0x0

Field Mask Cold Warm Description

Register txChanRd

TX channel read register
Cold reset value: 0x0

Warm reset value: 0x0

Field Mask Cold Warm Description

Register txChanlrq

TX channel irq register
Cold reset value: 0x0

Warm reset value: 0x0

Field Mask Cold Warm Description

Register rxChanCtrl

RX channel control register
Cold reset value: 0x0

Warm reset value: 0x0

Field Mask Cold Warm Description

Register rxChanAddr

RX channel address register

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 40 of 101
Rev. no: 2.2

Cold reset value: 0x0

Warm reset value: 0x0

Field Mask Cold Warm Description

Register rxChanSize

RX channel size register
Cold reset value: 0x0

Warm reset value: 0x0

Field Mask Cold Warm Description

Register rxChanWr

RX channel write register
Cold reset value: 0x0

Warm reset value: 0x0

Field Mask Cold Warm Description

Register rxChanRd

RX channel read register
Cold reset value: 0x0

Warm reset value: 0x0

Field Mask Cold Warm Description

Register rxChanlrqg

RX channel irq register
Cold reset value: 0x0

Warm reset value: 0x0

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference
Doc. no: TERMA/SPD/63/TEMU/MODREF Page 41 of 101
Rev. no: 2.2

Field Mask Cold Warm Description

Register rxChanMask

RX channel mask register
Cold reset value: 0x0

Warm reset value: 0x0

Field Mask Cold Warm Description

Register rxChanCode

RX channel code register
Cold reset value: 0x0

Warm reset value: 0x0

Field Mask Cold Warm Description

10.4. Limitations

* None

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 42 of 101
Rev. no: 2.2

Chapter 11. GRETH

The GRETH model is available in the GrEth plugin. The model needs to be combined with a
MDIOBus, PHY and Ethernet model.

The GRETH model implements the behaviour of both GRETH and GRETH_GBIT.

11.1. Loading the Plugin

import BusModels

import GrEth

GRETH.new name=greth0

GenericPHY.new name=phy0
EthernetLink.new name=eth0

connect a=greth0.phy b=phy0:PHYIface
connect a=greth0.mdioBus b=phy0:MDIOIface
connect a=apbctrl0.slaves b=greth0:ApbIface
greth0.setMAC mac="00:00:00:00:00:01"
connect a=phy0.mac b=greth0:MACIface
eth0.connect device=phy0:PHYIface

11.2. Limitations

The config.gbitVariant property can be set to enable GRETH_GBIT extensions. The extensions
includes:

Gigabit speed.

 IP header checksum offloading

TCP checksum offloading

UDP checksum offloading

Scatter / gather send lists.

11.2.1. Attributes

Properties

Name Type Description

ETHCTR uint32_t Ethernet Control Register

ETHMDC uint32 _t Ethernet MDIO Control and
Status Register

ETHRDP uint32_t Ethernet Receiver Descriptor

Pointer Register

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

TEMU: Model Reference
Doc. no: TERMA/SPD/63/TEMU/MODREF
Rev. no: 2.2

Name

ETHSIS

ETHTDP

MACLSB
MACMSB

config.checkCrc

config.checkIpCrc
config.checkTcpCrc

config.checkUdpCrc

config.gbitVariant

config.generateCrc

config.irq
config.logTraffic
irqCtrl

mac

mdioBus
memory

object.timeSource

phy
Interfaces

Name

Apblface
Devicelface
MACIface
MemAccessIface

ResetIface

Ports

PUBLIC

Type
uint32 t

uint32_t

uint32 t
uint32_t

uint8 t

uint8 t

uint8 t

uint8_t

uint8 _t

uint8 t

uint8 t

uint8_t

iref / IrqCtrlIface
cstring

iref / temu::MDIOIface
iref / Memorylface

object

iref / temu::PHYIface

Type

Apblface
Devicelface
temu::MACIface
MemAccessIface

ResetIface

@

Page 43 of 101

Description

Ethernet Status and Interrupt
Source Register

Ethernet Transmitter
Descriptor Pointer Register

Ethernet MAC Address LSB
Ethernet MAC Address MSB

Enable ethernet frame CRC
checking.

Enable IP header CRC checking.

Enable TCP header CRC
checking.

Enable UDP header CRC
checking.

Enable GRETH_GBIT behaviour.

Enable ethernet frame CRC
generation.

IRQ

Enable traffic logging
IRQ controller

Set MAC by string
MDIO bus

Memory

Time source object (a cpu or
machine object)

PHY device

Description

APB P&P interface

MAC interface

Mem access interface

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference
Doc. no: TERMA/SPD/63/TEMU/MODREF
Rev. no: 2.2

Prop Iface

11.2.2. Registers

A Register support is currently experimental!

Register Bank registers

Register ETHCTR

Ethernet Control Register
Cold reset value: 0x0

Warm reset value: 0x0

Field Mask Cold
EA 0x80000000 0x0
BS 0x70000000 0x0
GA 0x8000000 0x0
MA 0x4000000 0x0
MC 0x2000000 0x0
SP 0x80 0x0
RS 0x40 0x0
PM 0x20 0x0
FD 0x10 0x0
RI 0x8 0x0
TI 0x4 0x0
RE 0x2 0x0
TE 0x1 0x0

Register ETHSIS

Ethernet Status and Interrupt Source Register

Cold reset value: 0x0

Warm
0x0
0x0
0x0
0x0

0x0

0x0
0x0
0x0
0x0
0x0

0x0

0x0
0x0

Description

@

Page 44 of 101

Description
EDCL available
EDCL buffer size
Gigabit MAC

MDIO interrupts
supported

Multicast
supported

Speed

Reset

Open Packet Mode
Full Duplex

Enable Receiver
Interrupts

Enable
Transmitter
Interrupts

Receive Enable

Transmit Enable

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 45 of 101
Rev. no: 2.2

Warm reset value: 0x0

Field Mask Cold Warm Description

IA 0x80 0x0 0x0 Invalid Address

TS 0x40 0x0 0x0 Too Small

TA 0x20 0x0 0x0 Transmitter AHB
Error

RA 0x10 0x0 0x0 Receiver AHB
Error

TI 0x8 0x0 0x0 Transmitter
Interrupt

RI 0x4 0x0 0x0 Receiver Interrupt

TE 0x2 0x0 0x0 Transmitter Error

RE 0x1 0x0 0x0 Receiver Error

Register MACMSB

Ethernet MAC Address MSB
Cold reset value: 0x0

Warm reset value: 0x0

Field Mask Cold Warm Description
MSB Oxffff 0x0 0x0 Two MSB of MAC

Register MACLSB
Ethernet MAC Address LSB
Cold reset value: 0x0

Warm reset value: 0x0

Field Mask Cold Warm Description
LSB D <iviiiiig 0x0 0x0 Four LSB of MAC

Register ETHMDC
Ethernet MDIO Control and Status Register

Cold reset value: 0x0

Warm reset value: 0x0

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF

Page 46 of 101
Rev. no: 2.2
Field Mask Cold Warm Description
Data 0xffff0000 0x0 0x0 Data for MMI read
/ write
PHY ADDR 0xf800 0x0 0x0 PHY address
REG_ADDR 0x7c0 0x0 0x0 MII reg addr
NV 0x10 0x0 0x0 Not valid
BU 0x8 0x0 0x0 Busy
LF 0x4 0x0 0x0 Link fail
RD 0x2 0x0 0x0 Read
WR 0x1 0x0 0x0 Write
Register ETHTDP
Ethernet Transmitter Descriptor Pointer Register
Cold reset value: 0x0
Warm reset value: 0x0
Field Mask Cold Warm Description
TXDTRA Oxfffff800 0x0 0x0 Tx desc base
address
TX DESCRIPTOR_P 0x3f8 0x0 0x0 Tx desc offset
TR
Register ETHRDP
Ethernet Receiver Descriptor Pointer Register
Cold reset value: 0x0
Warm reset value: 0x0
Field Mask Cold Warm Description
RXDTRA 0xfffff800 0x0 0x0 Rx desc base
address
RX_DESCRIPTOR_P 0x3f8 0x0 0x0 Rx desc offset

TR

11.3. Limitations

* Multicast groups are not yet supported.

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 47 of 101
Rev. no: 2.2

* ECDL mode is not supported.

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 48 of 101
Rev. no: 2.2

Chapter 12. GRGPIO

The GRGPIO device is part of the GRLIB device library from Gaisler. The GrGPIO model simulates a
16 pin GPIO device by providing input and output via the Signallface.

12.1. Loading the Plugin

import GrGPIO

12.2. Limitations

* Only the UT700 based configuration is supported at the moment. That means that the bypass
and capabilities registers are missing. Further the IRQ map registers are not available.

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 49 of 101
Rev. no: 2.2

Chapter 13. GRSPW1

The GRSPW1 is part of the GRLIB IP library. It is available in ibTEMUGrspw1.so.
13.1. Loading the Plugin

import Grspw1l

13.2. Configuration

To work correctly, the device should be connected to an interrupt controller, the memory and
another SpaceWire device.

There are several configuration parameters in the GrSpw1 device, summarized in the following
table:

Name Description

config.infiniteSpeed With this set, messages are sent immediately
instead of being scheduled for the future based
on the message length. This is the default option.

config.transmitter.frequency Specify the SpaceWire transmitter frequency in
Hz. Affects transfer speed when infinite speed is
disabled.

config.transmitter.dataRate SpaceWire port datarate: 1=single, 2=double, etc.
Affects transfer speed when infinite speed is
disabled.

config.interrupt Influences the interrupt that is raised with the
IRQ controller (setting this property also updates
the APB PnP info).

config.realCrcCheck Set to use real crc check instead of packet crc
flags. Real crc costs in terms of performance.

13.2.1. Attributes

Properties
Name Type Description
config.infiniteSpeed uint8_t Set to use infinite speed for

transfers.

config.interrupt uint8_t The interrupt index

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

TEMU: Model Reference
Doc. no: TERMA/SPD/63/TEMU/MODREF
Rev. no: 2.2

Name

config.realCrcCheck

config.transmitter.dataRate

config.transmitter.frequency

internal.linkState

internal.txDAddr

internal.txDLength

internal.txFlags

internal.txHAddr

internal.txType

internal.uplinkNsPerByte
irqCtrl
memory

object.timeSource

pnp.bar
pnp.config
regs.clockDiv
regs.control
regs.destKey
regs.dmaControl

regs.dmaRxDescTableAddr

regs.dmaRxMaxLen

regs.dmaTxDescTableAddr

regs.nodeAddress

PUBLIC

Type

uint8 t

uint8 t

uint32 t

int32_t

uint32_t

uint32_t

uint32_t

uint32_t

uint8_t

uint32_t
iref / <unknown>
iref / <unknown>

object

uint32_t
uint32_t
uint32 t
uint32_t
uint32_t
uint32_t

uint32 t

uint32_t

uint32 t

uint32_t

@

Page 50 of 101

Description

Set to use real crc check instead
of packet crc flags

SpaceWire port datarate:
1=single, 2=double,...

SpaceWire transmitter
frequency in Hz

Link state

Data address for the scheduled
dma engine transfer

Data length for the scheduled
dma engine transfer

Flags for the scheduled dma
engine transfer

Header address for the
scheduled dma engine transfer

Scheduled transmission type
(dma engine/rmap)

Transmitter speed
Irq controller
Memory used for DMA accesses

Time source object (a cpu or
machine object)

Pnp BAR

Pnp configuration
Clock Divisor register
Control register
Destination Key register
Dma control registers

Dma receive descriptor table
address registers

Dma rx maximum length
registers

Dma transmit descriptor table
address registers

Node address register

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

TEMU: Model Reference
Doc. no: TERMA/SPD/63/TEMU/MODREF

Rev. no: 2.2

Name

regs.statusIrqSrc

regs.time

spwUplink

Interfaces

Name

Apblface
Devicelface
MemAccesslface
ResetlIface

SpwPortIface

Ports

Prop

13.3. Limitations

PUBLIC

Type
uint32 t

uint32_t

[2 x iref / <unknown>]

Type

Apblface
Devicelface
MemAccessIface
ResetIface

SpwPortlface

Iface

@

Page 51 of 101

Description

Status / Interrupt-source
register

Time register

SpaceWire devices connected to
the port

Description
Apb interface
Device interface

Memory Access Interface

SpaceWire ports interfaces

Description

The following limitations/deviations from real hardware are known to exist with this model:

* No spill is currently not implemented

» Althougth the device already provides two spacewire ports, dual port is not yet implemented.
This correspond to a device where the port VHDL parameter is set to 1. Therefore, in the control
register, PO will be 0 and PS / NP bit are not available. Let us know if you need this feature

implemented.

» The link interface currently effectively uses only ErrorReset, Ready, Connecting and Run states.
Therefore, those are the only values that will be visible on the status register.

* RMAPEN signals not available

13.4. Examples

This example shows how to create two Grspw1 devices and connect them.

import BusModels
import TEMUGrspw1

object-create class=Grspw1 name=grspw@d

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 52 of 101
Rev. no: 2.2

object-create class=Grspw1 name=grspw1
spw-connect portl1=grspw@d:SpwPortIface[@] port2=grspwl:SpwPortIface[0]

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 53 of 101
Rev. no: 2.2

Chapter 14. GRSPW?2

The Grspw2 model is part of the GRLIB IP library feature. It is available in the Grspw2 plugin.
14.1. Loading the Plugin

import Grspw2

14.2. Configuration

To work correctly, the device should be connected to an interrupt controller, the memory and
another SpaceWire device.

There are several configuration parameters in the GrSpw2 device, summarized in the following
table:

Name Description

config.infiniteSpeed With this set, messages are sent immediately
instead of being scheduled for the future based
on the message length. This is the default option.

config.transmitter.frequency Specify the SpaceWire transmitter frequency in
Hz. Affects transfer speed when infinite speed is
disabled.

config.transmitter.dataRate SpaceWire port datarate: 1=single, 2=double, etc.
Affects transfer speed when infinite speed is
disabled.

config.dma.rxdescnum Specifies the amount of rx description (0=128,
1=256, 2=512, 3=1024). This affect the
regs.dmaRxDescTableAddr

config.dma.txdescnum Specifies the amount of tx descriptors (0=64,
1=128, 2=256, 3=512). This affect the
regs.dmaTxDescTableAddr

config.interrupt Influences the interrupt that is raised with the
IRQ controller (setting this property also updates
the APB PnP info).

config.realCrcCheck Set to use real crc check instead of packet crc

flags. Real crc costs in terms of performance.

14.2.1. Attributes

Properties

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 54 of 101

Rev.no: 2.2

Name Type Description

config.dma.rxdescnum uint8_t Number of rx descriptors

config.dma.txdescnum uint8_t Number of tx descriptors

config.infiniteSpeed uint8_t Set to use infinite speed for
transfers.

config.interrupt uint8_t The interrupt index

config.realCrcCheck uint8_t Set to use real crc check instead
of packet crc flags

config.transmitter.dataRate uint8_t SpaceWire port datarate:
1=single, 2=double,...

config.transmitter.frequency uint32_t SpaceWire transmitter
frequency in Hz

internal.linkState int32_t Link state

internal.txCurrChan uint8_t Channel scheduled for
transmission

internal.txDAddr uint32 _t Data address for the scheduled
dma engine transfer

internal.txDLength uint32_t Data length for the scheduled
dma engine transfer

internal.txFlags uint32_t Flags for the scheduled dma
engine transfer

internal.txHAddr uint32 t Header address for the
scheduled dma engine transfer

internal.txType uint8_t Scheduled transmission type
(dma engine/rmap)

internal.uplinkNsPerByte uint32_t Transmitter speed

irqCtrl iref / <unknown> Irq controller

memory iref / <unknown> Memory used for DMA accesses

object.timeSource object Time source object (a cpu or
machine object)

pnp.bar uint32_t Pnp BAR

pnp.config uint32_t Pnp configuration

regs.clockDiv uint32_t Clock Divisor register

regs.control uint32 t Control register

regs.destKey uint32_t Destination Key register

regs.dmaAddr [4 x uint32_t] Dma address registers

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

TEMU: Model Reference
Doc. no: TERMA/SPD/63/TEMU/MODREF
Rev. no: 2.2

Name
regs.dmaControl

regs.dmaRxDescTableAddr
regs.dmaRxMaxLen
regs.dmaTxDescTableAddr

regs.nodeAddress

regs.statuslrqSrc

regs.time

spwUplink

Interfaces

Name

Apblface
Devicelface
MemAccessIface
ResetlIface

SpwPortIface

Ports

Prop

14.3. Limitations

PUBLIC

Type
[4 x uint32_t]
[4 x uint32_t]

[4 x uint32_t]

[4 x uint32_t]

uint32_t

uint32 t

uint32 _t

[2 x iref / <unknown>]

Type

Apblface
Devicelface
MemAccessIface
ResetIface

SpwPortIface

Iface

@

Page 55 of 101

Description
Dma control registers

Dma receive descriptor table
address registers

Dma rx maximum length
registers

Dma transmit descriptor table
address registers

Node address register

Status / Interrupt-source
register

Time register

SpaceWire devices connected to
the port

Description
Apb interface
Device interface

Memory Access Interface

SpaceWire ports interfaces

Description

The following deviations from real hardware are known to exist with this model:

» Althougth the device already provides two ports, dual port is not yet implemented. Let us know
if you need this feature implemented.

* The link interface currently effectively uses only ErrorReset, Ready, Connecting and Run states.
Therefore, those are the only values that will be visible on the status register.

* RMAPEN and PNPEN signals not available

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 56 of 101
Rev. no: 2.2

14.4. Examples

This example shows how to create two Grspw2 devices and connect them.

import BusModels

import Grspw2

object-create class=Grspw2 name=grspw@

object-create class=Grspw2 name=grspw

spw-connect port1=grspw@:SpwPortIface[@] port2=grspwl:SpwPortIface[0]

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 57 of 101
Rev. no: 2.2

Chapter 15. IRQMP

The IrqMP is part of the GRLIB device library from Gaisler. It is a multiprocessor capable interrupt
controller.

The controller supports among things the routing of interrupts to different processor cores, and
also broadcasted interrupts.

15.1. Loading the Plugin

import IrqMp

15.2. Configuration

config.nCpu

Number of processors supported.

config.enExtIrq
Enable extended IRQs.

pnp.config
Plug and play configuration word for APB plug-and-play.

cpu

Up to 16 CPUs supported. IfaceRef property should be connected to the different CPUs.

15.2.1. Attributes

Properties

Name Type Description
broadcast uint32_t

config.enExtIrq uint8_t

config.logInterrupts uint8_t

config.nCpu uint8_t

config.traceReads uint8_t

config.traceWrites uint8_t

cpu [16 x iref / <unknown>]

extIntAck [16 x uint32_t]

force [16 x uint32_t]

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

TEMU: Model Reference
Doc. no: TERMA/SPD/63/TEMU/MODREF
Rev. no: 2.2

Name
irqClear
irqCtrl
irqForce0
irqLevel
irqPending
mask
mpStatus

object.timeSource

pnp.bar
pnp.config

Interfaces

Name
ApblIface
Devicelface

IrqClientIface

IrqIface
MemAccessIface
ResetIface

Ports

Prop
irqCtrl

15.3. Limitations

PUBLIC

Type
uint32 t

[16 x iref / <unknown>]

uint32_t
uint32_t
uint32 t
[16 x uint32_t]
uint32 _t

object

uint32_t

uint32 _t

Type
ApblIface
Devicelface

IrqClientIface

IrqCtrlIface
MemAccessIface

ResetIface

Iface

IrqClientIface

@

Page 58 of 101

Description

Time source object (a cpu or
machine object)

Description

uptree interrupt handlers (e.g.
CPUs)

Description

irq port

The following deviations from real hardware are known to exist with this model:

* Broadcasted interrupts are broadcasted at the current time to all CPUs, if it was triggered by a
non-synchronised event, the interrupt is raised at different times on the different cores.
Depending on the IRQ frequency and the configured quanta length, this may result in problems.

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 59 of 101
Rev. no: 2.2

Chapter 16. LEON2 SoC

The Leon2SoC class implements a model of the LEON2 on chip devices (i.e. memory controller,
interrupt controller, UARTs and timers). The model must be combined with a LEON2 CPU to be
really useful.

16.1. Loading the Plugin

import Leon2SoC

16.2. Configuration

16.2.1. Interrupt Delivery

Set the irqControl property to point out the processor’s irq interface. The model will deliver normal
SPARC interrupts (1 up to 15). The LEON2 also exports the IrqCtrliface as IrqIface. IrqClientIface
should be wired from the CPU the LEON2 model is connected to.

The Irqlface enables the use of external interrupts using the raise and lower functions. The LEON2
has 8 external IRQs mapped according to the following table (the mappings cannot be customised at
present):
Table 1. External to Internal IRQ Mapping
External Internal (Sparc IRL)
4
5
6
7
10
12
13

N o ook W N e

15

The rules for IRQ raising is controlled by the GPIO IRQ config registers (it is also possible to raise
IRQs by setting and lowering GPIO pins).

16.2.2. UART Connections

The UARTSs are connected to the destination using the uarta and uartb properties. For the remote
end points, these should be connected to UartAlface and UartBIface.

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 60 of 101
Rev. no: 2.2

16.2.3. Infinite UART Speed

The UARTSs can run either at infinite speed, or at simulated real-time speed. This can be configured
using the infiniteUartSpeed property. Set this property to non-zero to enable infinite UART speed.

Note that this controls the speed of both UARTS.

When infinite speed is enabled, bytes are emitted to the destination serial device as soon as they
have been written by the OBSW.

16.2.4. GPIO

The GPIO support in the LEON2 model supports interrupt generation using the GPIO interface
instead of the IRQ controller interface. Model implements both the GpioClientIface and a property
with a GpioBuslface reference (called gpioBus). The GPIO bus connection is not mandatory to set. If
it is set, writes to the GPIO data register’s out bits will be forwarded over the GPIO port. Note that
the LEON2 only have 16 GPIO pins.

Both the legacy multipin GpioBusIface and the new single pin Signallface are supported. The model
will prioritise the legacy interface for backwards compatibility. If you wish to use the Signallface
interface you should not set the gpioBus property.

16.2.5. Caches

The LEON2 SoC can act as a cache controller. That means that a cache model can notify the SoC
about when it starts an evict/flush operation. The controller will also notify any connected caches
about enabling, disabling and freezing events happening.

The cache parameters in the cache control register and the product configuration register are set
automatically when connecting the dCache and iCache interface references to conforming objects.

g When connecting the cache references, make sure the caches are configured
before they are connected.

The caches that these interface references are connected to should normally be compliant with the
supported LEON2 cache parameters. That is, there is a limitation on the sizes, lines and ways.

While the model does a best effort in trying to report errors when a miss-configured cache model is
supplied, take care to ensure that the model is correctly configured.

16.2.6. Attributes

Properties
Name Type Description
ahbfailaddr uint32_t Fail address register

ahbstat uint32 _t Fail status register

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF

Rev. no: 2.2

Name
behaviour
cachectrl

cpu

dCache
gpioBus
gpiolrqLevel
gpiolrgMask
gpiolrgPolarity
gpiodir
gpioinout
gpioirqcfg
gpioirqcfg2
iCache
infiniteUartSpeed

irqControl

irqclear
irgforce

irqmask

irgpend
leoncfg
memcfgl

memcfg2

memcfg3

memcfg4
memcfg5
mr

object.timeSource

outSignals

PUBLIC
Type

uint8 t

uint32_t

iref / Cpulface

iref / <unknown>
iref / <unknown>
uint32_t
uint32 _t
uint32_t
uint32 t
uint32_t
uint32 _t
uint32_t
iref / <unknown>
uint32_t

iref / IrqCtrlIface

uint32 t
uint32_t

uint32 _t

uint32 t
uint32_t
uint32_t

uint32_t

uint32_t

uint32_t
uint32 t
uint32_t

object

[8 x iref / Signallface]

@

Page 61 of 101

Description
Set to 1 for COLE mode
Cache control register

CPU to control with powerdown

I/O port direction register
I/O port data register
I/0 port interrupt register 1

I/O port interrupt register 2

Next level IRQ controller object
(e.g. CPU)

Interrupt clear register
Interrupt force register

Interrupt mask and priority
register

Interrupt pending register
Product configuration register
Memory configration register 1

Memory configuration register
2

Memory configuration register
3

Memory configuration 4 (COLE)
Memory configuration 5 (COLE)
Map register (COLE)

Time source object (a cpu or
machine object)

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 62 of 101

Rev. no: 2.2

Name Type Description

powerdown uint32 t Idle register

prescentr uint32_t Prescaler counter register
prescrld uint32_t Prescaler reload register
timerlcntr uint32_t Timer 1 counter register
timer1ctrl uint32_t Timer 1 control register
timer1rld uint32_t Timer 1 reload register
timer2cntr uint32 _t Timer 2 counter register
timer2ctrl uint32_t Timer 2 control register
timer2rld uint32_t Timer 2 reload register
uartlDatTxHold uint32_t UART1 data TX hold register
uartlDatTxShift uint32_t UART 1 data TX shift

uartlctrl uint32_t UART 1 control register
uartldatrx uint32 t UART 1 RX data register
uartlscal uint32_t UART 1 scaler register
uartlstat uint32 _t UART 1 status register
uart2DatTxHold uint32_t

uart2DatTxShift uint32 t

uart2ctrl uint32_t UART 2 control register
uart2datrx uint32 _t UART 1 RX data register
uart2scal uint32_t UART 2 scaler register
uart2stat uint32 t UART 2 status register

uarta iref / <unknown>

uarthb iref / <unknown>

watchdog uint32_t Watchdog register

writeprotl uint32_t Write protection register 1
writeprot2 uint32_t Write protection register 2
writeprotstart1 uint32_t Write protection start address 1
writeprotstart2 uint32_t Write protection start address 2
writeprotstopl uint32_t Write protection end address 1
writeprotstop2 uint32_t Write protection end address 2

Interfaces

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC

TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF

Rev. no: 2.2

Name Type
DCacheCtrliface CachecCtrlIface
Devicelface Devicelface
GpioClientIface GpioClientIface
ICacheCtrliface CachecCtrlIface
IrqClientIface IrqClientIface
Irqlface IrqCtrliface
MemAccessIface MemAccessIface
ResetIface ResetIface
Signallface Signallface
UartAlface Seriallface
UartBIface Seriallface
Ports

Prop Iface
irqControl IrqClientIface
uarta UartAlface
uartb UartBIface
16.2.7. Registers

A Register support is currently experimental!

Register Bank registers

Register memcfgl

Memory configration register 1

Cold reset value: 0x0
Warm reset value: 0x0

Field Mask Cold
pbrdy 0x40000000 0x0
abrdy 0x20000000 0x0

@

Page 63 of 101

Description

D-cache to control

I-cache to control

IRQ acknowledgement (from
CPU)

IRQ controller, post your IRQs
here.

Incomming signals
UART A
UART B

Description
Interrupt
uart a

uartb

Warm Description

PROM area bus-
ready enable

Asynchronous bus
ready

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

TEMU: Model Reference
Doc. no: TERMA/SPD/63/TEMU/MODREF

Rev. no: 2.2

Field
iowdh

iobrdy

bexc

iows

ioen

prwen

prwdh

prwws

prrws

Mask
0x18000000
0x4000000

0x2000000

0xf00000

0x80000
0x800

0x300
0xf0

oxf

Register memcfg2

Memory configuration register 2

Cold reset value: 0x7

Warm reset value: 0x7

Field
sdrref

trp

trfc

sdrcas
sdrbs

sdrcls

sdrcmd
se
si

rambs

Mask
0x80000000
0x40000000

0x38000000

0x4000000
0x3800000
0x600000

0x180000
0x4000
0x2000
0x1e00

Cold
0x0
0x0

0x0

0x0
0x0
0x0

0x0
0x0

0x0

Cold
0x0
0x1

0x7

0x1
0x0
0x2

0x0
0x0
0x0
0x0

PUBLIC

Warm
0x0
0x0

0x0

0x0
0x0
0x0

0x0
0x0

0x0

Warm
0x0
0x1

0x7

0x1
0x0
0x2

0x0
0x0
0x0
0x0

@

Page 64 of 101

Description
I/0 bus width

I/O area bus ready
enable

Bus error enable
for RAM PROM
and I/O access

I/O waitstates
I/O area enable

PROM write
enable

PROM width

PROM write
waitstates

PROM read
waitstates

Description
SDRAM refresh
SDRAM t_rp
timing

SDRAM t_rfp
timing

SDRAM CAS delay
SDRAM bank size

SDRAM column
size

SDRAM command
SDRAM enable
SDRAM disable
SRAM bank size

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

TEMU: Model Reference
Doc. no: TERMA/SPD/63/TEMU/MODREF

Rev. no: 2.2

Field Mask
rambrdy 0x80
ramrmw 0x40
ramwdh 0x30
ramwws 0xc
ramrws 0x3

Register memcfg3

Memory configuration register 3

Cold reset value: 0x3

Warm reset value: 0x3

Field Mask

rfc 0xc0000000
me 0x8000000
SIcrv 0x7fff000
wh 0x800

rb 0x400

re 0x200

pe 0x100

tch Oxff

Register ahbfailaddr

Fail address register

Cold reset value: 0x0

Warm reset value: 0x0

PUBLIC

Cold
0x2

0x2

0x2
0x0

0x0

Cold
0x3

0x1

0x0

0x0

0x0

0x0
0x0

0x0

Warm

0x2

0x2

0x2
0x0

0x0

Warm

0x3

0x1

0x0

0x0

0x0

0x0
0x0

0x0

@

Page 65 of 101

Description

SRAM area bus
ready enable

SRAM read-
modify-write
SRAM bus width

SRAM write
waitstates

SRAM read
waitstates

Description

Register file
checkbits

Memory EDAC

SDRAM refresh
counter reload
value

EDAC diagnostic
write bypass

EDAC diagnostic
read

RAM EDAC enable

PROM EDAC
enable

Test checkbits

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

TEMU: Model Reference
Doc. no: TERMA/SPD/63/TEMU/MODREF

Rev. no: 2.2

Field

Register ahbstat

Mask

Fail status register

Cold reset value: 0x0

Warm reset value: 0x0

Field

eed

hed

het

hem

hes

Mask
0x200

0x100

0x80

0x78

0x7

Register cachectrl

Cache control register

Cold reset value: 0x3

Warm reset value: 0x3

Field

drepl

irepl

isets

dsets

Mask
0xc0000000

0x30000000

0xc000000

0x1000000

Cold

Cold
0x0

0x0

0x0

0x0

0x0

Cold
0x3

0x3

0x3

0x1

PUBLIC

Warm

Warm

0x0

0x0

0x0

0x0

0x0

Warm

0x3

0x3

0x3

0x1

@

Page 66 of 101

Description

Description

EDAC-correctable
error detected

Hardware error
detected
Hardware error
type

Hardware error

module

Hardware error
size

Description
Data cache
replacement
policy
Instruction cache
replacement
policy
Instruction cache

associativity

Data cache
associativity

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 67 of 101

Rev. no: 2.2

Field Mask Cold Warm Description

ds 0x800000 0x0 0x0 Data cache snoop
enable

fd 0x400000 0x0 0x0 Flush data cache

fi 0x200000 0x0 0x0 Flush instruction
cache

cpc 0x180000 0x2 0x2 Cache parity bits

cpth 0x60000 0x3 0x3 Cache parity test
bits

ib 0x10000 0x3 0x3 Instruction burst
fetch

ip 0x8000 0x3 0x3 Instruction cache
flush pending

dp 0x4000 0x0 0x0 Data cache flush
pending

ite 0x3000 0x0 0x0 Instruction cache
tag error counter

ide 0xc00 0x0 0x0 Instruction cache
data error counter

dte 0x300 0x0 0x0 Data cache tag
error counter

dde 0xcO 0x0 0x0 Data cache data
error counter

df 0x20 0x0 0x0 Data cache freeze
on interrupt

if 0x10 0x0 0x0 Instruction cache
freeze on
interrupt

dcs 0xc 0x0 0x0 Data cache state

ics 0x3 0x0 0x0 Instruction cache
state

Register powerdown

Idle register
Cold reset value: 0x0

Warm reset value: 0x0

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

TEMU: Model Reference
Doc. no: TERMA/SPD/63/TEMU/MODREF
Rev. no: 2.2

Field Mask

Register writeprotl

Write protection register 1
Cold reset value: 0x0

Warm reset value: 0x0

Field Mask

en 0x80000000
bp 0x40000000
tag 0x1fff8000
mask 0x3fff

Register writeprot2

Write protection register 2
Cold reset value: 0x0

Warm reset value: 0x0

Field Mask

en 0x80000000
bp 0x40000000
tag 0x1fff8000
mask Ox3fff

Register writeprotstartl

Write protection start address 1
Cold reset value: 0x0

Warm reset value: 0x0

Field Mask
start 0x3ffffffc
bp 0x2

Register writeprotstart2

Cold

Cold
0x0
0x0
0x0
0x0

Cold
0x0
0x0
0x0
0x0

Cold
0x0
0x0

PUBLIC

Warm

Warm
0x0
0x0
0x0
0x0

Warm
0x0
0x0
0x0
0x0

Warm
0x0
0x0

@

Page 68 of 101

Description

Description
Enable

Block protect
Address tag

Address mask

Description
Enable

Block protect
Address tag

Address mask

Description
Start address

Block protect

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

TEMU: Model Reference
Doc. no: TERMA/SPD/63/TEMU/MODREF
Rev. no: 2.2

Write protection start address 2
Cold reset value: 0x0

Warm reset value: 0x0

Field Mask Cold
start 0x3ffffffc 0x0
bp 0x2 0x0

Register writeprotstopl

Write protection end address 1
Cold reset value: 0x0

Warm reset value: 0x0

Field Mask Cold
end Ox3ffffffc 0x0
us 0x2 0x0
su 0x1 0x0

Register writeprotstop?2

Write protection end address 2
Cold reset value: 0x0

Warm reset value: 0x0

Field Mask Cold
end Ox 3ffffffc 0x0
us 0x2 0x0
su 0x1 0x0

Register leoncfg

Product configuration register
Cold reset value: 0x7

Warm reset value: 0x7

PUBLIC

Warm
0x0
0x0

Warm
0x0
0x0
0x0

Warm
0x0
0x0
0x0

@

Page 69 of 101

Description
Start address

Block protect

Description
End address
User mode

Supervisor mode

Description
End address
User mode

Supervisor mode

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 70 of 101

Rev. no: 2.2

Field Mask Cold Warm Description

mmu 0x80000000 0x0 0x0 Memory
management unit

dsu 0x40000000 0x1 0x1 Debug support
unit

sdrctrl 0x20000000 0x1 0x1 SDRAM controller

wtpnb 0x1c000000 0x4 0x4 IU watchpoints

imac 0x2000000 0x0 0x0 UMAC/SMAC
instructions

nwin 0x1f00000 0x7 0x7 IU register file
windows

icsz 0xe0000 0x3 0x3 Instruction cache
set size

ilsz 0x18000 0x3 0x3 Instruction cache
line size

dcsz 0x7000 0x3 0x3 Data cache set size

dlsz 0xc00 0x2 0x2 Data cache line
size

divinst 0x200 0x1 0x1 UDIV/SDIV
instructions

mulinst 0x100 0x1 0x1 UMUL/SMUL
instructions

wdog 0x80 0x1 0x1 Watchdog

memstat 0x40 0x1 0x1 Memory status
and address
failing register

fpu 0x30 0x1 0x1 FPU type

pci 0xc 0x1 0x1 PCI core type

wprt 0x3 0x1 0x1 Write protections

Register timerlcntr

Timer 1 counter register
Cold reset value: 0x0

Warm reset value: 0x0

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

TEMU: Model Reference
Doc. no: TERMA/SPD/63/TEMU/MODREF
Rev. no: 2.2

Field Mask

Register timerirld

Timer 1 reload register
Cold reset value: 0x0

Warm reset value: 0x0

Field Mask

Register timerictrl

Timer 1 control register
Cold reset value: 0x0

Warm reset value: 0x0

Field Mask
1d 0x4
rl 0x2
en 0x1

Register watchdog

Watchdog register
Cold reset value: 0x0

Warm reset value: 0x0

Field Mask

Register timer2cntr

Timer 2 counter register
Cold reset value: 0x0

Warm reset value: 0x0

Cold

Cold

Cold
0x0
0x0
0x0

Cold

PUBLIC

Warm

Warm

Warm
0x0
0x0
0x0

Warm

@

Page 71 of 101

Description

Description

Description
Load counter
Reload counter

Enable counter

Description

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF

Rev. no: 2.2

Field

Register timer2rld

Timer 2 reload register
Cold reset value: 0x0

Warm reset value: 0x0

Field

Register timer2ctrl

Timer 2 control register
Cold reset value: 0x0

Warm reset value: 0x0

Field
1d
rl

en

Register presccntr

Prescaler counter register
Cold reset value: 0x0

Warm reset value: 0x0

Field

cnt

Register prescrld

Prescaler reload register
Cold reset value: 0x0

Warm reset value: 0x0

Cold

Cold

Cold
0x0
0x0
0x0

Cold
0x0

PUBLIC

Warm

Warm

Warm
0x0
0x0
0x0

Warm

0x0

@

Page 72 of 101

Description

Description

Description
Load counter
Reload counter

Enable counter

Description

Prescaler counter
value

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

TEMU: Model Reference
Doc. no: TERMA/SPD/63/TEMU/MODREF

Rev. no: 2.2
Field Mask Cold
v 0x3ff 0x0

Register uartldatrx

UART 1 RX data register
Cold reset value: 0x0

Warm reset value: 0x0

Field Mask Cold
rtd Oxff 0x0

Register uartlstat

UART 1 status register
Cold reset value: 0x1

Warm reset value: 0x1

Field Mask Cold
fe 0x40 0x0
pe 0x20 0x0
ov 0x10 0x0
br 0x8 0x0
th 0x4 0x1
ts 0x2 0x1
dr 0x1 0x0

Register uartlctrl

UART 1 control register
Cold reset value: 0x0

Warm reset value: 0x0

PUBLIC

Warm

0x0

Warm

0x0

Warm
0x0
0x0
0x0
0x0
0x1

0x1

0x0

@

Page 73 of 101

Description

Prescaler reload
value

Description

Received/transmit
data

Description
Framing error
Parity error
Overrun
Break received

Transmitter hold
register empty

Transmitter shift
register empty

Data ready

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

TEMU: Model Reference
Doc. no: TERMA/SPD/63/TEMU/MODREF

Rev. no: 2.2

Field Mask Cold
ec 0x100 0x0
1b 0x80 0x0
fl 0x40 0x0
pe 0x20 0x0
ps 0x10 0x0
ti 0x8 0x0
ri 0x4 0x0
te 0x2 0x0
re 0x1 0x0

Register uartlscal

UART 1 scaler register
Cold reset value: 0x0

Warm reset value: 0x0

Field Mask Cold

Register uart2datrx

UART 1 RX data register
Cold reset value: 0x0

Warm reset value: 0x0

Field Mask Cold

rtd Oxff 0x0

Register uart2stat

UART 2 status register
Cold reset value: 0x1

Warm reset value: 0x1

PUBLIC

@

Page 74 of 101

Warm Description

0x0 External clock

0x0 Loop back

0x0 Flow control

0x0 Parity enable

0x0 Parity select

0x0 Transmitter
interrupt enable

0x0 Receiver interrupt
enable

0x0 Transmitter
enable

0x0 Receiver enable

Warm Description

Warm Description

0x0 Received/transmit
data

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 75 of 101

Rev. no: 2.2

Field Mask Cold Warm Description

fe 0x40 0x0 0x0 Framing error

pe 0x20 0x0 0x0 Parity error

ov 0x10 0x0 0x0 Overrun

br 0x8 0x0 0x0 Break received

th 0x4 0x1 0x1 Transmitter hold
register empty

ts 0x2 0x1 0x1 Transmitter shift
register empty

dr 0x1 0x0 0x0 Data ready

Register uart2ctrl

UART 2 control register
Cold reset value: 0x0

Warm reset value: 0x0

Field Mask Cold Warm Description
ec 0x100 0x0 0x0 External clock
Ib 0x80 0x0 0x0 Loop back

fl 0x40 0x0 0x0 Flow control
pe 0x20 0x0 0x0 Parity enable
ps 0x10 0x0 0x0 Parity select

ti 0x8 0x0 0x0 Transmitter

interrupt enable

ri 0x4 0x0 0x0 Receiver interrupt
enable

te 0x2 0x0 0x0 Transmitter
enable

re 0x1 0x0 0x0 Receiver enable

Register uart2scal

UART 2 scaler register
Cold reset value: 0x0

Warm reset value: 0x0

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 76 of 101
Rev. no: 2.2

Field Mask Cold Warm Description

Register irgmask

Interrupt mask and priority register
Cold reset value: 0x0

Warm reset value: 0x0

Field Mask Cold Warm Description

ilevel io7 0x80000000 0x0 0x0 Interrupt level
ilevel_pci 0x40000000 0x0 0x0 Interrupt level
ilevel io6 0x20000000 0x0 0x0 Interrupt level
ilevel io5 0x10000000 0x0 0x0 Interrupt level
ilevel dsu 0x8000000 0x0 0x0 Interrupt level
ilevel io4 0x4000000 0x0 0x0 Interrupt level
ilevel_timer2 0x2000000 0x0 0x0 Interrupt level
ilevel timer1l 0x1000000 0x0 0x0 Interrupt level
ilevel io3 0x800000 0x0 0x0 Interrupt level
ilevel io2 0x400000 0x0 0x0 Interrupt level
ilevel iol 0x200000 0x0 0x0 Interrupt level
ilevel io0 0x100000 0x0 0x0 Interrupt level
ilevel uartl 0x80000 0x0 0x0 Interrupt level
ilevel uart2 0x40000 0x0 0x0 Interrupt level
ilevel_amba 0x20000 0x0 0x0 Interrupt level
imask_io7 0x80000000 0x0 0x0 Interrupt mask
imask_pci 0x40000000 0x0 0x0 Interrupt mask
imask_io6 0x20000000 0x0 0x0 Interrupt mask
imask_io5 0x10000000 0x0 0x0 Interrupt mask
imask_dsu 0x8000000 0x0 0x0 Interrupt mask
imask_io4 0x4000000 0x0 0x0 Interrupt mask
imask_timer2 0x2000000 0x0 0x0 Interrupt mask
imask_timer1 0x1000000 0x0 0x0 Interrupt mask

imask_io3 0x800000 0x0 0x0 Interrupt mask

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

TEMU: Model Reference
Doc. no: TERMA/SPD/63/TEMU/MODREF

Rev. no: 2.2

Field Mask Cold
imask_io2 0x400000 0x0
imask_iol 0x200000 0x0
imask_io0 0x100000 0x0
imask_uartl 0x80000 0x0
imask_uart2 0x40000 0x0
imask_amba 0x20000 0x0

Register irgpend

Interrupt pending register
Cold reset value: 0x0

Warm reset value: 0x0

Field Mask Cold

Register irgforce

Interrupt force register
Cold reset value: 0x0

Warm reset value: 0x0

Field Mask Cold

Register irqclear

Interrupt clear register
Cold reset value: 0x0

Warm reset value: 0x0

Field Mask Cold

Register gpioinout

I/O port data register

PUBLIC

Warm
0x0
0x0
0x0
0x0
0x0
0x0

Warm

Warm

Warm

@

Page 77 of 101

Description

Interrupt mask
Interrupt mask
Interrupt mask
Interrupt mask
Interrupt mask

Interrupt mask

Description

Description

Description

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 78 of 101
Rev. no: 2.2

Cold reset value: 0x0

Warm reset value: 0x0

Field Mask Cold Warm Description

Register gpiodir

I/O port direction register
Cold reset value: 0x0

Warm reset value: 0x0

Field Mask Cold Warm Description

Register gpioirqcfg

I/O port interrupt register 1
Cold reset value: 0x0

Warm reset value: 0x0

Field Mask Cold Warm Description

Register gpioirqcfg2

I/O port interrupt register 2
Cold reset value: 0x0

Warm reset value: 0x0

Field Mask Cold Warm Description

16.3. Limitations

The Leon2 Device model simulates the AT697F chip. There are some deviations to the AT697E chip
(e.g. the size of the counters). If you need the AT697E behaviour, please contact us for more info.

The following deviations from real hardware are known to exist, if you need the correct behaviour
(or simulation of it, contact us for more info):

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF

Page 79 of 101

Rev. no: 2.2

No support for Ethernet at present

No support for PCI at present

The UARTSs do not support external clocks.

The UARTSs do not support parity, framing errors and break signals.

GPIO pin configurations are ignored for UARTs, the UARTs are assumed to be on separate
dedicated I/O pins. However, a warning will be issued if the UART pins do not have the correct
GPIO configuration.

GPIO databus control is not supported (i.e. meddat and lowdat fields).
Write protection registers have no effect

Timer values are lazily computed on reads, the content in the case a timer is disabled is
estimated on disabling time. This is in principle correct. However, the prescaler counter write
has no effect, only the reload value has an effect when written. This may cause an offset of 1024
cycles when re-enabling a timer.

In general the MEMCFG registers are ignored

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 80 of 101
Rev. no: 2.2

Chapter 17. Machine

The machine class is used to assemble and group related processors in machines. The machine class
is intended to be used for SMP and multi-core systems. It provides the following capabilities:

1. A multi-CPU scheduler that executes all the CPUs in the machine in sequence (for a fixed time
quanta).

2. A synchronised event queue. CPUs can post events in the next time quanta to be executed after
all the processors have reached a specific time point.

3. A scheduling interface enabling the machine to be run for a time specified in seconds, not
cycles.

Note that the machine class supports the scheduling of different CPUs with different clock
frequencies.

Synchronised events are posted on a CPUs event queue by adding the flag TEMU_EVENT_SYNC to
the posting function, this will bypass the CPU event queue and put it in the machine object’s queue.

17.1. Configuration

17.1.1. Attributes

Properties

Name Type Description

cpus irefarray / <unknown> Processors in the machine

currentCPU iref / <unknown> Current CPU

currentCPUIdx int32_t Current CPU Index

devices irefarray / <unknown> Devices to reset when machine
is reset

object.timeSource object Time source object (a cpu or
machine object)

quanta uint64_t Quanta length in nanoseconds

quantaEnd uint64_t End point of current quanta in
nanoseconds

quantaStart uint64_t Quanta start in nanoseconds

syncMask uint64_t Synchronised CPU mask

Interfaces

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

TEMU: Model Reference
Doc. no: TERMA/SPD/63/TEMU/MODREF

Rev. no: 2.2

Name
Eventlface
Legacylface
Machinelface
ObjectIface

ResetlIface

Ports

Prop

17.2. Limitations

Type
Eventlface
Legacylface
Machinelface
ObjectIface

ResetlIface

Iface

@

Page 81 of 101

Description

Description

e The machine class cannot have more than 64 CPU cores connected.

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 82 of 101
Rev. no: 2.2

Chapter 18. MEC

The MEC (Memory Controller) device is used with the ERC32 processor. The device provides two
UARTSs, two timers and an interrupt interface. The interrupt interface allows for the raising and
lowering of the 5 external interrupts provided by the ERC32 (IRQ O through (including) 4). The
device model takes care of converting these to the relevant internal interrupts (i.e. SPARC IRQs
2,3,10,11 and 14). When raising (or lowering) a MEC interrupt you need to use numbers 0-4.

18.1. Loading the Plugin

import Mec

18.2. Configuration

18.2.1. Interrupt Delivery

The property irqControl should be connected to the device which the MEC raises interrupts on, this
is normally a CPU object. The connection should be made to the CPU-object’s interface of type
IrqIface. Note that the CPU must support interrupts 1 through 15, this is in general case correct for
SPARC based processors, but other CPUs may not be compatible.

18.2.2. UART Connections

Two serial interfaces exist, the UartAlIface and the UartBIface, these can be connected to in order to
receive data from remote serial port terminals (i.e. this is the RX direction). The uarta and uartb
properties can be used to connect the TX direction of the UARTS.

18.2.3. Infinite UART Speed

Set config.infiniteUartSpeed to nonzero to enable infinite speed on the Tx channels. With infinite
speed, a written byte is immediately forwarded to the destination device, with limited UART speed
(the variable being zero) the timing due to UART scaler bits (upper 8 bits of the MecCtrlReg) will be
simulated, leading to realistic byte rates over the serial port device. Note that individual bits are not
transmitted only the bytes.

18.2.4. Attributes

Properties

Name Type Description
accessProtSegmentlBase uint32_t

accessProtSegment1End uint32_t

accessProtSegment2Base uint32_t

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF

Rev. no: 2.2

Name
accessProtSegment2End
config.infiniteUartSpeed
cpu
errorAndResetStatus
failingAddr

gpiConfig

gpiData

gptCounter
gptCounterProgramReg
gptScaler
gptScalerProgramReg
ioConfig

irqClear

irgControl

irqForce

irqgMask

irqPending

irgShape

mecCtrl

memoryConfig

object.timeSource

outSignals
powerDown
rtcCounter
rtcCounterProgramReg
rtcScaler
rtcScalerProgramReg
softwareReset
systemFaultStatus
testControl

timerControl

PUBLIC @

Page 83 of 101

Type Description
uint32 t

uint32_t

iref / <unknown>
uint32_t

uint32 t

uint32_t

uint32 _t

uint32_t

uint32 t

uint32_t

uint32 _t

uint32_t

uint32 t

iref / <unknown>
uint32 _t

uint32_t

uint32 t

uint32_t

uint32 _t

uint32_t

object Time source object (a cpu or
machine object)

[8 x iref / Signallface]
uint32_t
uint32 t
uint32_t
uint32_t
uint32_t
uint32 t
uint32_t
uint32_t

uint32_t

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 84 of 101
Rev. no: 2.2

Name Type Description
uartChanARxTx uint32_t

uartChanBRxTx uint32_t

uartStatus uint32_t

uarta iref / <unknown>

uartb iref / <unknown>

waitStateConfig uint32_t

wdogProgAndTimeoutAck uint32_t

wdogTrapDoorSet uint32_t

Interfaces

Name Type Description
Devicelface Devicelface

IrqClientIface IrqClientIface

Irqlface Irqlface

MemAccesslface MemAccessIface

ResetlIface ResetIface

Signallface Signallface Incomming signals
UartAlface Seriallface

UartBIface Seriallface

Ports

Prop Iface Description
irqControl IrqClientlIface uart a

uarta UartAlface uart a

uarthb UartBIface uart b

18.3. Notes

The MEC sets the interrupt pending register bit when an interrupt is raised even when the
interrupt is masked. The mask is only applied when evaluating whether to raise an IRQ with the
CPU.

18.4. Limitations

The following deviations from real hardware are known to exist, if you need the correct behaviour

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 85 of 101
Rev. no: 2.2

(or simulation of it, contact us for more info):

* The UARTSs do not support external (watchdog) clocks.

* The UARTs do not support parity, framing errors, break signals or stop bit configuration
(although the transmission times are computed based on stop bit count and parity bit
embedding).

* Write protection registers have no effect

* Timer values are lazily computed on reads, the content in the case a timer is disabled is
estimated on disabling time. This is in principle correct. However, the prescaler counter write
has no effect, only the reload value has an effect when written. This may cause an offset of 1024
cycles when re-enabling a timer.

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 86 of 101
Rev. no: 2.2

Chapter 19. MIL-STD-1553

This document describes the TEMU MIL-STD-1553 bus model and its interfaces. The MIL-STD-1553
standard is often referred to as simply milbus or 1553.

The 1553 protocol is described in detail in the well known "MIL-STD-1553 Tutorial" document from
AIM GmbH (formerly published by Condor). It is recommended that persons involved with
modelling bus controllers and remote terminals keep a copy of that document at close hand.

The TEMU support for the 1553 protocol consist of a bus interface (Mil1553Buslface), a bus model
(MilStd1553Bus) and a bus client interface (Mil1553DevIface).

This approach enables the user to not only implement remote terminal models, but also to
implement their own bus models would the bundled one not be found suitable (e.g. if the user have
existing remote terminal models that must be integrated with specific interfaces).

The most common task for the end user will normally be to implement remote terminal models, but
bus controllers are also possible as they use the same interface.

19.1. Bus Model

The 1553 bus model is available as a class with the name MilStd1553Bus in the TEMU "BusModels"
plugin.

19.2. Configuration

The bus model is configured using the Mil1553BusIface. The main work is to call the connect
function to insert a remote terminal at the given subaddress.

SetBusController should be called to set the current bus controller (note, this can be done at
runtime).

The construction of a network with 1553 devices are simplified by using the following commands in
the command line interface:

e mil-std-1553-connect bus=b rt=rt addr=1
e mil-std-1553-disconnect bus=b addr=1
e mil-std-1553-setbc bus=b bc=bc

19.2.1. Attributes

Properties

Name Type Description

bc iref / <unknown>

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF

Rev. no: 2.2

Name
devices
lastCmd

object.timeSource

receiverRT
stats.lastReportSentWords
stats.sentWords
transmitterRT

Interfaces

Name

Mil1553BusIface

Ports

Prop

19.2.2. Attributes

Properties

Name
bus

object.timeSource

statPeriod

Interfaces

Name

Ports

PUBLIC

Type
[32 x iref / <unknown>]
uintl6_t

object

int8 t
uint64 t
uint64 _t

int8 t

Type
Mil1553Buslface

Iface

Type
object

object

double

Type

@

Page 87 of 101

Description

Time source object (a cpu or
machine object)

Description

Description

Description
Bus object to monitor.

Time source object (a cpu or
machine object)

Statistics report period in
seconds, set to positive enables
reports.

Description

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 88 of 101
Rev. no: 2.2

Prop Iface Description

19.2.3. Notifications

The default TEMU milbus model issues the following notifications:

Name Description Param Type
temu.mil1553Stat Statistics notification. temu_Mil1553Stats™
temu.mil1553Send Valid message in transit. temu_Mil1553Msg*

The statistics notification is issued when calling the reportStats function in the bus interface. The
user can call this function from a timed event handler if needed. Another interesting calling point is
to force statistics reporting at a PPS tick, i.e. a PPS device issues the call to the milbus object to
report the statistics, and can attempt to post other events at minor cycle intervals for example. This
way the stat event can be used to monitor whether the system keeps the milbus budget.

The send notification receives a pointer with the actual message in transit, but before it has been
delivered to the remote terminal (but after the bus object has rejected any messages transmitted
illegally). The notification handler is free to modify the message, for example it is possible to set the
Err field in the message struct to inject a transfer error, the RT can then set the message error bit in
the status word.

19.3. Limitations

The bus object does not support bus monitors in the normal sense, however, it is possible to turn on
the temu.mil1553Send notification and listen in on all traffic using this notification interface.

For the command line support, only models with one and only one device interface with the name
Mil1553DevlIface is supported. This may change in the future.

19.4. API

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 89 of 101
Rev. no: 2.2

Chapter 20. Interfaces

typedef struct temu_Mil1553BusIface {
void (*connect)(void *Bus, int Subaddr, temu Mil1553DevIfaceRef Device);
void (*disconnect)(void *Bus, int Subaddr);
void (*reportStats)(void *Bus);
void (*send)(void *Bus, void *Sender, temu_Mil1553Msg *Msg);

// Controls whether events should be issued at send calls

void (*enableSendEvents)(void *Bus);

void (*disableSendEvents)(void *Bus);

void (*setBusController)(void *Bus, temu_Mil1553DevIfaceRef Device);
} temu_Mil1553BusIface;

typedef struct temu_Mil1553DevIface {
void (*connected)(void *Device, temu_Mil1553BusIfaceRef Bus, int SubAddr);
void (*disconnected)(void *Device, temu_Mil1553BusIfaceRef Bus, int SubAddr);
void (*receive)(void *Device, temu_Mil1553Msg *Msgq);

} temu_Mil1553DevIface;

20.1. Writing Clients

Bus Controllers and Remote Terminals

Bus controllers and remote terminals can be implemented using the Mil1553Buslface interface.
This interface is defined in "temu-c/Bus/MilStd1553.h".

The interface consist of the connected, disconnected and receive functions. These are all mandatory
and they are called whenever a virtual cable is connected and disconnected, or when a 1553 bus
message is received.

A remote terminal needs to know about the bus it is connected to so it can use the send function in
the Mil1553BusIface interface.

Do not call the bus send function from the device receive function, doing so will
A result in undefined behaviour. If a response is to be issued due to handling of a
receive, ensure that an event is posted on the model’s event queue source.

The TEMU 1553 API follows the standard fairly well and subdivides 1553 transactions in phases
which are command, data, status and mode command phases. To send a receive command, the bus
controller will first send a message of the type teMT_Cmd, followed by a teMT_Data message. The
remote terminal is then expected to respond with a teMT_Stat message. The remote terminal and
bus controller model is responsible for issuing the different messages with delays. Delays can be
computed using the temu_mil1553TransferTime() function.

Messages should be sent in whole when they are supposed to arrive. This means that the bus

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 90 of 101
Rev. no: 2.2

controller model can immediately raise any needed interrupts when a message is complete.
The TEMU default 1553 bus model will print error messages if a remote terminal

o does not follow the 1553 protocol phases properly (e.g. sending a status response to
a broadcast message).

void
receive(void *Device, temu_Mil1553Msg *Msg)
{

MyRT *RT = (MyRT*)Device;

//...

// Start sending response
temu_eventPostNanos(RT->Super.TimeSource, RT->TransferCompleteEvent,
temu_mil1553TransferTime(1), // One word for status message

teSE_Cpu);
}
void
transferComplete(temu_Event *Ev)
{

MyRT *RT = (MyRT*)Ev->0bj;

uint16_t Stat = computeStatWord(RT);
temu_Mi11553Msg Msg = temu_mil1553CreateStatMsg(&Stat);

RT->Bus.Iface->send(RT->Bus.0bj, RT, &Msg); // Send the message

Bus Monitors

The 1553 bus interface does not support the implementation of bus monitors directly at this
moment. The reason for this is that, the message notification interface already allows the system to
inspect all the bus traffic executed. The notification interface can also be used to modify traffic in
situ (e.g. to flip the error flags in the message object). Terma appreciates that there may be need for
some users to support modelling of bus monitors, please contact Terma if this is needed.

20.2. Capture Device

TEMU is bundled with a MILBUS capture device that enables capturing of the bus traffic. There are
three supported options for message capture:

* Logging command words issued to the TEMU log with partial decoding
* CSV output with command words and partial decodes of them

* PCAPNG file with all data transferred. File can be loaded in Wireshark if needed.

To create a logging capture device, create the bus capture instance using:

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 91 of 101
Rev. no: 2.2
For logging: object-create class=MilStd1553BusCapturer name=milbus-cap0 \

args=fmt:log,bus:milbus0

For CSV output (into milbus0.csv): object-create class=MilStd1553BusCapturer name=milbus-cap0 \
args=fmt:csv,bus:milbus0

For PCAPNG output (into milbusO.pcapng): object-create class=MilStd1553BusCapturer
name=milbus-cap0 \ args=fmt:pcapng,bus:milbus0

Do not forget to set the time source for the capture device: connect-timesource obj=milbus-cap0
ts=cpu0

While the logging and CSV modes should be clear enough, there are some notes to be providede
regarding the PCAPNG format.

Firstly, the capture model captures logical units in the protocol, that is, command words are
captured by themselves, as is status messages and data messages.

Secondly, the capture model use the flags in the frame block to mark where the data came from.
That is, it flags unicast, and broadcast messages as such, and it also flags the direction as outbound
for frames emitted by the BC (e.g. command words, mode codes, data sent to RTs etc) and inbound
for data sent from RTs.

Thirdly, LINKTYPE_USERO is used for the device type (there is no standardised milbus link type),
this linktype is not supported directly by Wireshark, and a dissector needs to be implemented to
make frames more human readable.

Due to these caveats, interpreting the 1553 protocol in Wireshark is a bit tricky, but in general, we
can say that command sequences starts with outbound frames, which are followed by inbound
frames. A dissector (or human viewing without a dissector) needs to be clever about decoding these
frames and take into account the previous frames sent, it is likely also necessary in case of failed
transfers to take into account such flags as well as buscontrollers tend to retry message transfers if
they fail.

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 92 of 101
Rev. no: 2.2

Chapter 21. Serial Console

The serial console is a simple endpoint for serial traffic that you can connect a device’s UART to. It
echos received data to stdout and optionally logs the data in an unbounded log.

21.1. Loading the Plugin

import Console

21.2. API

There is a dedicated API for accessing the console log. Note that the functions are defined in
libTEMUConsole.so.

This API does not work on macOS.

// Include the Console API
#include "temu-c/Models/Console.h"

// These functions are defined in 1ibTEMUConsole.so
uint64 t temu_consoleGetlLineCount(void *Con);
const char* temu_consoleGetlLine(void *Con, uint64_t Line);

21.3. Configuration

21.3.1. Creation

The Console class is defined in libTEMUConsole.so. The constructor takes no parameters.

21.3.2. Options

config.caretControl can be used to eliminate some VT100 characters that are printed to the console
otherwise.

config.recordTraffic can be set to enable data recording in the console model, this data can then be
extracted with the API.

21.3.3. Attributes

Properties
Name Type Description
config.caretControl uint8 t

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

TEMU: Model Reference
Doc. no: TERMA/SPD/63/TEMU/MODREF
Rev. no: 2.2

Name

config.outFile
config.recordTraffic
config.reformatNonPrintable
lastByte

object.timeSource

outByte
serial
Interfaces

Name
LineDataLoggerIface
Seriallface

Ports

Prop

serial

21.4. Limitations

PUBLIC

Type

cstring
uint8_t
uint8 t
uint8_t

object

uint8 t

iref / <unknown>

Type
LineDataLoggerIface

Seriallface

Iface

Seriallface

@

Page 93 of 101

Description

File name to write TTY log to.

Time source object (a cpu or
machine object)

Description

Description

serial port

* The record buffer cannot be cleaned without deleting the console object.

 Caret control only omits caret sequences from being put on stdout (especially nice when booting
Linux). It doesn’t act on the sequences in any way at the moment e.g. a delete character will be
ignored and not actually delete anything.

* The record buffer will not be snapshotted.

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 94 of 101
Rev. no: 2.2

Chapter 22. Serial Console Ul

The serial console ui is a simple graphical endpoint for serial traffic that you can connect a device’s
UART to. It forks of a separate process which display a new window with the serial port output. This
window also handles interactive input, meaning that you can for example type commands to a
command line interface provided by the software running in the emulated environment.

The console window supports limited VT100 emulation.
22.1. Loading the Plugin

import ConsoleUI

22.2. Limitations

As with all other models, problems not listed here should be reported to Terma as they may
indicate bugs in the software.

* The Console Ul requires QT 4 to be installed (e.g. with your package manager) and any needed
support libraries for QT. Thus the console in particular has a lot of extra dependencies over the
rest of the emulator. If you are running this on specific systems and the console does not work,
please report this to Terma.

* The console always do VT100 emulation, the emulation cannot be disabled.

* Only partial VT100 support exists. The supported CSIs include colors and cursor movements.
Some CSIs may be missing.

* The console does not echo input back automatically, this is typically done by the remote serial
end. Consequently, you will not see any characters if you type them in the console and the
remote does not echo back.

* The console model will in normal mode poll the input at 100 Hz as the emulator at the moment
of writing does not support the injection of asynchronous events. The 100 Hz polling is good
enough for interactive use.

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 95 of 101
Rev. no: 2.2

Chapter 23. SpaceWire

TEMU provides support for SpaceWire based devices. It also provides helpful functions for RMAP
commands decoding. The bus model interfaces are available in: temu-c/Bus/Spacewire.h. In addition
to the interfaces a simple SpaceWire Router model is provided.

Spacewire is a point to point bus. Two devices can be connected directly while multiple devices can
be connected through a Router. A SpaceWire Route receives a packet on a port and forward it to
another, where the destination device is connected.

Spacewire uses wormhole routing. The sender device provides the list of addresses (each address is
an 8-bit value) required to reach the destination. Each node in the middle is supposed to strip the
first address and use it to select the port used to forward the packet.

23.1. API

The interesting interfaces are defined in the temu-c/Bus/Spacewire.h header.

typedef enum {
teSMT Data = 1,
teSMT Err = 2,
teSMT _Time = 3,

} temu_SpwPacketType;

typedef struct temu_SpwPacket {
temu_SpwPacketType MsgType;
temu Buff PktData;
uint8_t Flags;

} temu_SpwPacket;

typedef enum {
teSPWLS _ErrorReset = 1,
teSPWLS_Ready = 2,
teSPWLS Started = 3,
teSPWLS_Connecting = 4,
teSPWLS Run = 5

} temu_SpwLinkState;

struct temu_SpwPortIface {
void (*receive)(void *Device, void *Sender, temu_SpwPacket *Pkt);
void (*signallinkStateChange)(void* Device, temu_SpwLinkState LinkState);
temu_SpwLinkState (*getOtherSidelLinkState)(void* Device);
void (*connect)(void *Device, temu_SpwPortIfaceRef Dest);
void (*disconnect)(void *Device);
uint64_t (*timeToSendPacketNs)(void* Device, uint64_t Packetlength);

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 96 of 101
Rev.no: 2.2

While the SpaceWire protocol is character based, to have better performances TEMU transfers full
messages with a single call on the port interface. Example of messages are a data packet, an RMAP
packet and a time code. Control characters like FCT (flow control) are abstracted away.

The SpaceWire packet structure is used to pass a packet between nodes. The MsgType field
identifies if the packet is a timecode, a complete data packet (ending with EOP) or an incomplete
data packet (ending with EEP). The PktData field contains the packet data or the time code value.

A TEMU buffer is used to hold the data. This data structure has been implemented to handle
SpaceWire packets in a performant way. It allows to acquire a reference to a part of the original
data so that a copy of data is not required for each node due to wormhole routing stripping. It also
free the memory used to store the original message when no more references are active. This way,
destination devices can maintain the data as long as needed without coping it.

SpaceWire links are full-duplex. The SpaceWire link is modeled by simply having each device
implementing a port interface and holding a reference to other end port. This allows comunication
in both directions simultaneously.

SpaceWire devices often have several connections port. The SpwPortIface is meant to be implement
for each port a device intends to provide.

temu-c/Bus/Spacewire.h header also define functions to help decode RMAP packets:

Name Description

temu_spwRmapDecodePacket Provided a SpaceWire Rmap packet attempts to
decode it.

temu_spwRmapDecodeBuffer Provided a buffer containing a SpaceWire Rmap

packet attempts to decode it.

temu_spwRmapHeaderReplySize Returns the total packet-size required to reply to
the command.

temu_spwRmapEncodeReadReplyHeaderForPac Encodes the reply for a read command.
ket

temu_spwRmapEncodeRmwHeaderForPacket Encodes the reply for a rmw command.

temu_spwRmapEncodeWriteReplyHeaderForPa Encodes the reply for a write command.
cket

temu_spwRmapCRCNextCode Provided the previous calculated crc and a the
current byte returns the next CRC value.

temu_spwRmapCRC Calculates the CRC over the specified data.

23.2. Limitations

The following deviations from real hardware are known to exist with this model:
* When two different devices try to access the same device the two accesses will happend

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference
Doc. no: TERMA/SPD/63/TEMU/MODREF Page 97 of 101
Rev. no: 2.2

simultaneously. This should not be the case, the accesses should be sequential (the second
device should wait for the bus to be free). This issue will be solved in the future when bus-
reservation feature will be implemented.

23.3. Commands

The following commands are provided:

Name Description

spw-connect Connect the two SpaceWire port interfaces
provided as parameters

spw-disconnect Disconnect the two SpaceWire port interfaces
provided as parameters

23.4. Models

23.4.1. SpwRouter

The SpwRouter class provides a simple SpaceWire Router that lets the user configure the mapping
between the packet-address and the port that will be used to forward the packet. More advanced
features like Group Adaptive Routing or Packet Distribution are not implemented.

23.4.2. Attributes

Properties

Name Type Description

internal.linkState [32 xint32_t] Holds the link state of the ports

object.timeSource object Time source object (a cpu or
machine object)

ports [32 x iref / <unknown>] Connected SpaceWire devices

routingTable [256 x uint8_t] Configure packet-
address/forwarding-port
mapping

Interfaces

Name Type Description

SpwPortIface SpwPortIface Input spacewire ports
interfaces

Ports

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF

Rev. no: 2.2

Prop

23.4.3. Attributes

Properties

Name
count.Rx
count.Tx

enabled

internal.linkState

object.timeSource

port

protocolld
rxUdpPort
targetAddr

targetAddrLength

txHost
txUdpPort
Interfaces
Name
SpwPortIface
Ports

Prop

23.5. Examples

PUBLIC

Iface

Type
uint32 t
uint32 t

uint8 t

int32_t

object

iref / <unknown>
uint8 t
uint16 _t

[16 X uint8_t]

uint8 t

cstring

uint16_t

Type
SpwPortlface

Iface

@

Page 98 of 101

Description

Description
Counter for received messages.
Counter for received messages.

Enable/Disable UDP. Required to
change properties.

Holds the link state of the port

Time source object (a cpu or
machine object)

Connected SpaceWire device.
Protocol ID to be used.
Udp port used to receive.

Addresses to use to forard a
packet received via UDP.

Number of valid addresses in
targetAddr array.

File name to write TTY log to.

Udp port used to send.

Description

Input spacewire port interfaces

Description

This example shows how to create a simple SpaceWire Router and a Grspw2 device and connect

them.

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC

TEMU: Model Reference
Doc. no: TERMA/SPD/63/TEMU/MODREF
Rev. no: 2.2

import BusModels
import TEMUGrspw2
object-create class=Grspw2 name=grspw@

object-create class=SpwRouter name=spwRouter

@

Page 99 of 101

spw-connect port1=grspw@:SpwPortIface[0] port2=spwRouter:SpwPortIface[0]

The next example shows how to implement a simple SpaceWire device

<stdint.h>
<stdio.h>
<string.h>

#include
#include
#include

#include
#include
#include
#include

"temu-c/Support/0Objsys.h"
"temu-c/Support/Attributes.h"
"temu-c/Support/Logging.h"
"temu-c/Bus/Spacewire.h"

typedef struct {
temu_Object Super;

int TransmitterDataRate;

temu_SpwLinkState LinkState;

temu_SpwPortIfaceRef Uplink;
} SpwDevice;

void*
create(const char *Name,
int Argc TEMU_UNUSED,

const temu_CreateArg *Argv TEMU_UNUSED)

{
void *0bj = malloc(sizeof(SpwDevice));
memset(0bj, @, sizeof(SpwDevice));
printf("Creating Object '%s'\n", Name);
return 0Obj;

}

void

destroy(void *0bj)

{
free(0bj);

}

static void
spwDeviceChangelLinkState(SpwDevice *Device,

{

temu_SpwLinkState LinkState)

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 100 of 101
Rev. no: 2.2

Device->LinkState = LinkState;
if ((Device->Uplink.Iface != NULL) && (Device->Uplink.Obj != NULL)) {
Device->Uplink.Iface->signallinkStateChange(
Device->Uplink.0bj, LinkState);
}
}

[IT111177
// SpwPortIface @ implementation
[IT1177

static void
spwPortIfaceReceive@(void *0bj, void *Sender, temu_SpwPacket *Pkt)
{

// Handle packet received.

SpwDevice *Dev = (SpwDevice*)(0bj);

temu_logInfo(Dev, "Received SpaceWire packet");

}

static void
spwPortIfaceSignallinkStateChange@(void *0bj, temu_SpwLinkState LinkState)
{

// The other side notified us that its link state changed.

SpwDevice *Dev = (SpwDevice*)(0bj);

temu_logInfo(Dev, "Other side link state changed");

// Depending on the other side 1link state change update this
// device link state.
}

static temu_SpwLinkState
spwPortIfaceGetOtherSidelLinkState@(void *0bj)
{
// Other side request this device state.
SpwDevice *Dev = (SpwDevice*)(0bj);
return (temu_SpwLinkState)Dev->LinkState;
}

static void
spwPortIfaceConnect@(void *0bj, temu_SpwPortIfaceRef PortIf)

{
SpwDevice *Dev = (SpwDevice*)(0bj);
Dev->Uplink = PortIf;

// When two ports are connected the device goes to ready state.
spwDeviceChangelLinkState(Dev, teSPWLS_Ready);
}

static void

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

PUBLIC
TEMU: Model Reference

Doc. no: TERMA/SPD/63/TEMU/MODREF Page 101 of 101
Rev. no: 2.2

spwPortIfaceDisconnect@(void *0bj)

{
SpwDevice *Dev = (SpwDevice*)(0bj);
Dev->Uplink.Iface = NULL;
Dev->Uplink.0bj = NULL;

// When two ports are diconnected the device goes to error reset state.
spwDeviceChangelLinkState(Dev, teSPWLS_ErrorReset);
}

static uint64_t

spwPortIfaceTimeToSendPacketNs@(void* Obj, uint64_t PacketSize)

{
SpwDevice *Dev = (SpwDevice*)(0bj);
// Return the time required to transmit the packet through this port.
return PacketSize / Dev->TransmitterDataRate;

}

temu_SpwPortIface SpwPortIface@ = {
spwPortIfaceReceive@,
spwPortIfaceSignallinkStateChange®,
spwPortIfaceGetOtherSidelinkState®,
spwPortIfaceConnect®,
spwPortIfaceDisconnect®,
spwPortIfaceTimeToSendPacketNs@

I

TEMU_PLUGIN_INIT
{

temu_Class *Cls = temu_registerClass("SpwDevice", create, destroy);

// Reference to the port interface of the other end.
temu_addProperty(Cls, "Uplink",
offsetof(SpwDevice, Uplink),
teTY_IfaceRef,
1, // Number of elements (1 = scalar)
NULL, NULL,
"Other end port interface");

// Port interface.

temu_addInterface(Cls, "SpwPortIface", "SpwPortIface", &SpwPortIfaced,
0, "SpaceWire port interface");

The use and/or disclosure,etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

	TEMU: Model Reference
	Table of Contents
	Chapter 1. Models
	Chapter 2. AMBA
	2.1. Interfaces
	2.2. Classes
	2.3. Examples

	Chapter 3. APBUART
	3.1. Loading the Plugin
	3.2. Attributes
	3.3. Limitations

	Chapter 4. CAN
	4.1. Interfaces
	4.2. Commands
	4.3. Classes
	4.4. Examples

	Chapter 5. CAN_OC
	5.1. Loading the Plugin
	5.2. Configuration
	5.3. Limitations

	Chapter 6. Ethernet
	6.1. Connections
	6.2. Checksums
	6.3. Auto Negotiation
	6.4. Frames
	6.5. Ethernet Link
	6.6. PHY Model
	6.7. MDIO Model
	6.8. MAC Models

	Chapter 7. Generic Cache
	7.1. Configuration
	7.2. Properties
	7.3. Limitations

	Chapter 8. GPIO Bus
	8.1. Configuration
	8.2. Class Info
	8.3. Limitations

	Chapter 9. GPTIMER
	9.1. Loading the Plugin
	9.2. Limitations

	Chapter 10. GRCAN
	10.1. Loading the Plugin
	10.2. Attributes
	10.3. Registers
	10.4. Limitations

	Chapter 11. GRETH
	11.1. Loading the Plugin
	11.2. Limitations
	11.3. Limitations

	Chapter 12. GRGPIO
	12.1. Loading the Plugin
	12.2. Limitations

	Chapter 13. GRSPW1
	13.1. Loading the Plugin
	13.2. Configuration
	13.3. Limitations
	13.4. Examples

	Chapter 14. GRSPW2
	14.1. Loading the Plugin
	14.2. Configuration
	14.3. Limitations
	14.4. Examples

	Chapter 15. IRQMP
	15.1. Loading the Plugin
	15.2. Configuration
	15.3. Limitations

	Chapter 16. LEON2 SoC
	16.1. Loading the Plugin
	16.2. Configuration
	16.3. Limitations

	Chapter 17. Machine
	17.1. Configuration
	17.2. Limitations

	Chapter 18. MEC
	18.1. Loading the Plugin
	18.2. Configuration
	18.3. Notes
	18.4. Limitations

	Chapter 19. MIL-STD-1553
	19.1. Bus Model
	19.2. Configuration
	19.3. Limitations
	19.4. API

	Chapter 20. Interfaces
	Chapter 21. Serial Console
	21.1. Loading the Plugin
	21.2. API
	21.3. Configuration
	21.4. Limitations

	Chapter 22. Serial Console UI
	22.1. Loading the Plugin
	22.2. Limitations

	Chapter 23. SpaceWire
	23.1. API
	23.2. Limitations
	23.3. Commands
	23.4. Models
	23.5. Examples

